fLk-Harmonic Maps andfLk-Harmonic Morphisms

被引:1
作者
Aminian, Mehran [1 ]
Namjoo, Mehran [1 ]
机构
[1] Vali E Asr Univ Rafsanjan, Dept Math, Rafsanjan, Iran
关键词
L(k)operator; Energy functional; Harmonic map; ISOPARAMETRIC HYPERSURFACES;
D O I
10.1007/s40306-020-00392-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introducefL(k)-energy functionals; and by deriving variations of these functionals, we definefL(k)-harmonic maps between Riemannian manifolds. Hereafter, by using these definitions, we introducefL(k)-harmonic morphisms, and then we find a relation betweenfL(k)-harmonic maps andfL(k)-harmonic morphisms.
引用
收藏
页码:499 / 507
页数:9
相关论文
共 13 条
[1]   An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures [J].
Alias, Luis J. ;
Gurbuz, Nevin .
GEOMETRIAE DEDICATA, 2006, 121 (01) :113-127
[2]   Lk-biharmonic Hypersurfaces in Space Forms [J].
Aminian M. ;
B. Kashani S.M. .
Acta Mathematica Vietnamica, 2017, 42 (3) :471-490
[3]  
Balmu A, 2009, BIHARMONIC MAPS SUBM
[4]   On the remarkable families of isoparametric hypersurfaces in spherical spaces. [J].
Cartan, E .
MATHEMATISCHE ZEITSCHRIFT, 1939, 45 :335-367
[5]  
CARTAN E, 1940, REV U TUCUMAN A, V1, P5
[6]  
Chen B.-Y, 2014, SERIES PURE MATH
[7]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[8]  
Fuglede B., 1978, Ann. Inst. Fourier, V28, P107, DOI [10.5802/aif.691, DOI 10.5802/AIF.691]
[9]  
Ishihara T., 1979, J. Math. Kyoto Univ., V19, P215
[10]   2-harmonic maps and their first and second variational formulas [J].
Jiang Guoying .
NOTE DI MATEMATICA, 2008, 28 :209-232