Control of chaos in nonautonomous systems with quasiperiodic excitation

被引:5
|
作者
Zhalnin, AY [1 ]
机构
[1] Russian Acad Sci, Inst Radio Engn & Elect, Saratov, Russia
基金
俄罗斯基础研究基金会;
关键词
Control System; Logistic Mapping; Small Action; Duffing Oscillator; Nonautonomous System;
D O I
10.1134/1.1262590
中图分类号
O59 [应用物理学];
学科分类号
摘要
A procedure is suggested for controlling chaos in quasiperiodically excited systems by stabilizing an unstable torus, or creating a new one by means of a small action. For this purpose the controlled system is synchronized with one which is similar but in a state of stable quasiperiodic motion. The method is illustrated for a quasiperiodically perturbed logistic mapping and a Duffing oscillator. (C) 1999 American Institute of Physics. [S1063-7850(99)02608-7].
引用
收藏
页码:662 / 664
页数:3
相关论文
共 50 条
  • [1] Control of chaos in nonautonomous systems with quasiperiodic excitation
    A. Yu. Zhalnin
    Technical Physics Letters, 1999, 25 : 662 - 664
  • [2] Hyperbolic Chaos and Quasiperiodic Dynamics in Experimental Nonautonomous Systems of Coupled Oscillators
    Isaeva, O. B.
    Savin, D. V.
    Seleznev, E. P.
    Stankevich, N. V.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 3109 - 3113
  • [3] Homoclinical structures in nonautonomous systems: Nonautonomous chaos
    Lerman, L. M.
    Shil'nikov, L. P.
    CHAOS, 1992, 2 (03) : 447 - 454
  • [4] CHAOS IN NONAUTONOMOUS DYNAMICAL SYSTEMS
    Oprocha, Piotr
    Wilczynski, Pawel
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (03): : 209 - 221
  • [5] Quasiperiodic Extremals of Nonautonomous Lagrangian Systems on Riemannian Manifolds
    I. O. Parasyuk
    Ukrainian Mathematical Journal, 2015, 66 : 1553 - 1574
  • [6] Laminar chaos in systems with quasiperiodic delay
    Mueller-Bender, David
    Radons, Gunter
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [7] Quasiperiodic Extremals of Nonautonomous Lagrangian Systems on Riemannian Manifolds
    Parasyuk, I. O.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 66 (10) : 1553 - 1574
  • [8] Chaos in nonautonomous discrete dynamical systems
    Dvorakova, J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (12) : 4649 - 4652
  • [9] Chaos in hyperspaces of nonautonomous discrete systems
    Sanchez, Ivan
    Sanchis, Manuel
    Villanueva, Hugo
    CHAOS SOLITONS & FRACTALS, 2017, 94 : 68 - 74
  • [10] Devaney Chaos in Nonautonomous Discrete Systems
    Zhu, Hao
    Shi, Yuming
    Shao, Hua
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (11):