On significance of second-order dynamics for coupled tanks systems

被引:0
|
作者
Grygiel, Rafal [1 ]
Bieda, Robert [1 ]
Blachuta, Marian [1 ]
机构
[1] Silesian Tech Univ, Dept Automat Control, 16 Akad St, PL-44101 Gliwice, Poland
来源
2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR) | 2016年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Coupled tanks systems play an important role in teaching of control theory. Although due to the existence of two independent storages, making them a second order system, it has been shown that one time constant is at least 6 time greater than the other. In normal operation conditions this ratio is about 10-20. Therefore, special attention is necessary to explain their properties.
引用
收藏
页码:1016 / 1021
页数:6
相关论文
共 50 条
  • [41] Nonlinear Systems of Second-Order ODEs
    Patricio Cerda
    Pedro Ubilla
    Boundary Value Problems, 2008
  • [42] Nonlinear systems of second-order ODEs
    Cerda, Patricio
    Ubilla, Pedro
    BOUNDARY VALUE PROBLEMS, 2008, 2008 (1)
  • [43] ON SECOND-ORDER CONE POSITIVE SYSTEMS
    Grussler, Christian
    Rantzer, Anders
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2717 - 2739
  • [44] ON SECOND-ORDER QUADRATIC SYSTEMS AND ALGEBRAS
    Sagle, Art
    Schmitt, Klaus
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (9-10) : 877 - 894
  • [45] STABILITY OF SECOND-ORDER DYNAMIC SYSTEMS
    VOITSEKH.KF
    DOKLADY AKADEMII NAUK SSSR, 1969, 184 (05): : 1061 - &
  • [46] Second-order equations as Friedrichs systems
    Antonic, Nenad
    Burazin, Kresimir
    Vrdoljak, Marko
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 15 : 290 - 305
  • [47] Pole assignment for second-order systems
    Chu, EK
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2002, 16 (01) : 39 - 59
  • [48] Second-order superintegrable quantum systems
    Miller, W.
    Kalnins, E. G.
    Kress, J. M.
    PHYSICS OF ATOMIC NUCLEI, 2007, 70 (03) : 576 - 583
  • [49] Second-order superintegrable quantum systems
    W. Miller
    E. G. Kalnins
    J. M. Kress
    Physics of Atomic Nuclei, 2007, 70 : 576 - 583
  • [50] SYSTEMS OF SECOND-ORDER VARIATIONAL INEQUALITIES
    FREHSE, J
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 15 (04) : 421 - 429