A New Smart-Fabric based Body Area Sensor Network for Work Risk Assessment

被引:0
作者
Lanata, Antonio [1 ]
Greco, Alberto [2 ]
Di Modica, Stefano [2 ]
Niccolini, Francesco [2 ]
Vivaldi, Federico [3 ]
Di Francesco, Fabio [3 ]
Tamantini, Christian [4 ]
Cordella, Francesca [4 ]
Zollo, Loredana [4 ]
Di Rienzo, Marco [5 ]
Massaroni, Carlo [6 ]
Schena, Emiliano [6 ]
Di Sarto, Mariasabrina [7 ]
Scilingo, Enzo Pasquale [2 ]
机构
[1] Univ Florence, Dept Informat Engn, Florence, Italy
[2] Univ Pisa, Res Ctr Piaggio, Pisa, Italy
[3] Univ Pisa, Dept Chem & Ind Chem, Pisa, Italy
[4] Campus Biomed, CREO Lab, Rome, Italy
[5] IRCCS Fond Don C Gnocchi, Milan, Italy
[6] Campus Biomed, Meas & Biomed Instr Lab, Rome, Italy
[7] Sapienza Univ Rome, Dept Astr Elect Energy Engn, Rome, Italy
来源
2020 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 & IOT (METROIND4.0&IOT) | 2020年
关键词
Biomedical Signal Processing; Wireless Body Area Sensor Network; Smart Textile; Work Risk Assessment; Machine Learning; Mobile Platform;
D O I
10.1109/metroind4.0iot48571.2020.9138273
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study reports on a novel Smart-Fabric based wireless Body Area Sensor Network for assessing psychological and physiological work risk levels. The combination of smart-sensing fabrics advantages, high electronic miniaturization, and the latest machine learning enables the system to assess the risk level of the worker. The body area sensor network includes a smartphone, an artificial intelligence algorithm for risk assessment, and a set of sensor-nodes integrated into a textile substrate (i.e., activity detection, electrocardiogram (ECG), sweat rate, body temperature, and textile integrated respiration sensors). Preliminary and encouraging results are shown in terms of physiological signals and physical activity detection.
引用
收藏
页码:187 / 190
页数:4
相关论文
共 8 条
[1]   Nursing churn and turnover in Australian hospitals: Nurses perceptions and suggestions for supportive strategies [J].
Dawson A.J. ;
Stasa H. ;
Roche M.A. ;
Homer C.S.E. ;
Duffield C. .
BMC Nursing, 13 (1)
[2]   SeisMote: A Multi-Sensor Wireless Platform for Cardiovascular Monitoring in Laboratory, Daily Life, and Telemedicine [J].
Di Rienzo, Marco ;
Rizzo, Giovannibattista ;
Isilay, Zeynep Melike ;
Lombardi, Prospero .
SENSORS, 2020, 20 (03)
[3]  
Gross S., 1997, COGNITIVE READINGS D
[4]   A longitudinal, mixed methods investigation of newly qualified nurses' workplace stressors and stress experiences during transition [J].
Halpin, Yvonne ;
Terry, Louise M. ;
Curzio, Joan .
JOURNAL OF ADVANCED NURSING, 2017, 73 (11) :2577-2586
[5]   How the Autonomic Nervous System and Driving Style Change With Incremental Stressing Conditions During Simulated Drivinge [J].
Lanata, Antonio ;
Valenza, Gaetano ;
Greco, Alberto ;
Gentili, Claudio ;
Bartolozzi, Riccardo ;
Bucchi, Francesco ;
Frendo, Francesco ;
Scilingo, Enzo Pasquale .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2015, 16 (03) :1505-1517
[6]   Nurse turnover: the mediating role of burnout [J].
Leiter, Michael P. ;
Maslach, Christina .
JOURNAL OF NURSING MANAGEMENT, 2009, 17 (03) :331-339
[7]   On the use of wearable physiological monitors to assess heat strain during occupational heat stress [J].
Notley, Sean R. ;
Flouris, Andreas D. ;
Kenny, Glen P. .
APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2018, 43 (09) :869-881
[8]   Wearable System-on-a-Chip UWB Radar for Contact-less Cardiopulmonary Monitoring: Present Status [J].
Zito, D. ;
Pepe, D. ;
Mincica, M. ;
Zito, F. ;
De Rossi, D. ;
Lanata, A. ;
Scilingo, E. P. ;
Tognetti, A. .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :5274-+