A two-grid stabilization method for solving the steady-state Navier-Stokes equations

被引:66
作者
Kaya, S [1 ]
Rivière, A [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
subgrid eddy viscosity; Navier-Stokes equations; finite elements; two-grid method;
D O I
10.1002/num.20120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate a subgrid eddy viscosity method for solving the steady-state incompressible flow problem. The eddy viscosity does not act on the large flow structures. Optimal error estimates are obtained for velocity and pressure. The numerical illustrations agree completely with the theoretical results. (C) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:728 / 743
页数:16
相关论文
共 21 条
[1]  
Adams R., 1975, Sobolev space
[2]  
Akin J. E., 1994, FINITE ELEMENT ANAL
[3]  
[Anonymous], 1979, FINITE ELEMENT APPRO, DOI DOI 10.1007/BFB0063447
[4]  
[Anonymous], RAIRO R
[5]  
Arnold D., 1984, CALCOLO, V21, P337, DOI 10.1007/bf02576171
[6]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-66165-5
[8]   Numerical analysis of the modified EVSS method [J].
Fortin, M ;
Guenette, R ;
Pierre, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 143 (1-2) :79-95
[9]   HIGH-RE SOLUTIONS FOR INCOMPRESSIBLE-FLOW USING THE NAVIER STOKES EQUATIONS AND A MULTIGRID METHOD [J].
GHIA, U ;
GHIA, KN ;
SHIN, CT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 48 (03) :387-411
[10]   Two-grid finite-element schemes for the transient Navier-Stokes problem [J].
Girault, V ;
Lions, JL .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (05) :945-980