Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces

被引:154
作者
Boreyko, Jonathan B. [1 ]
Srijanto, Bernadeta R. [1 ,5 ]
Trung Dac Nguyen [2 ]
Vega, Carlos [4 ]
Fuentes-Cabrera, Miguel [1 ,3 ]
Collier, C. Patrick [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
[4] Univ Complutense, Fac Ciencias Quim, Dept Quim Fis, E-28040 Madrid, Spain
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
SOURCE HEAT-PUMP; MOLECULAR-DYNAMICS; LIQUID-DROPS; WATER; CONDENSATION; FABRICATION; GROWTH; ICE; SIMULATIONS; PERFORMANCE;
D O I
10.1021/la401282c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here, we report that nanostructured superhydrophobic surfaces. Promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15 degrees). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven by the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments.
引用
收藏
页码:9516 / 9524
页数:9
相关论文
共 61 条
[1]   Dynamics of Ice Nucleation on Water Repellent Surfaces [J].
Alizadeh, Azar ;
Yamada, Masako ;
Li, Ri ;
Shang, Wen ;
Otta, Shourya ;
Zhong, Sheng ;
Ge, Liehui ;
Dhinojwala, Ali ;
Conway, Ken R. ;
Bahadur, Vaibhav ;
Vinciquerra, A. Joseph ;
Stephens, Brian ;
Blohm, Margaret L. .
LANGMUIR, 2012, 28 (06) :3180-3186
[2]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[3]   Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting [J].
Bischof, J ;
Scherer, D ;
Herminghaus, S ;
Leiderer, P .
PHYSICAL REVIEW LETTERS, 1996, 77 (08) :1536-1539
[4]   Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces [J].
Boreyko, Jonathan B. ;
Collier, C. Patrick .
ACS NANO, 2013, 7 (02) :1618-1627
[5]   Wetting and Dewetting Transitions on Hierarchical Superhydrophobic Surfaces [J].
Boreyko, Jonathan B. ;
Baker, Christopher H. ;
Poley, Celeste R. ;
Chen, Chuan-Hua .
LANGMUIR, 2011, 27 (12) :7502-7509
[6]   Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
PHYSICAL REVIEW LETTERS, 2009, 103 (18)
[7]   Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh [J].
Brown, W. Michael ;
Kohlmeyer, Axel ;
Plimpton, Steven J. ;
Tharrington, Arnold N. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (03) :449-459
[8]   Implementing molecular dynamics on hybrid high performance computers - short range forces [J].
Brown, W. Michael ;
Wang, Peng ;
Plimpton, Steven J. ;
Tharrington, Arnold N. .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (04) :898-911
[9]   Simulations of H2O solid, liquid, and clusters, with an emphasis on ferroelectric ordering transition in hexagonal ice [J].
Buch, V ;
Sandler, P ;
Sadlej, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (44) :8641-8653
[10]   Anti-Icing Superhydrophobic Coatings [J].
Cao, Liangliang ;
Jones, Andrew K. ;
Sikka, Vinod K. ;
Wu, Jianzhong ;
Gao, Di .
LANGMUIR, 2009, 25 (21) :12444-12448