Higher order time discretizations with ALE finite elements for parabolic problems on evolving surfaces

被引:11
作者
Kovacs, Balazs [1 ]
Guerra, Christian Andreas Power [1 ]
机构
[1] Univ Tubingen, Math Inst, Morgenstelle 10, D-72076 Tubingen, Germany
关键词
full discretizations; evolving surfaces; ESFEM; ALE; Runge-Kutta methods; BDF; DIFFERENTIAL-EQUATIONS; WAVE-EQUATIONS; ERROR ANALYSIS; PDES;
D O I
10.1093/imanum/drw074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A linear evolving surface partial differential equation is first discretized in space by an arbitrary Lagrangian Eulerian (ALE) evolving surface finite element method, and then in time either by a Runge-Kutta method, or by a backward difference formula. The ALE technique allows one to maintain the mesh regularity during the time integration, which is not possible in the original evolving surface finite element method. Stability and high order convergence of the full discretizations is shown, for algebraically stable and stiffly accurate Runge-Kutta methods, and for backward differentiation formulas of order less than 6. Numerical experiments are included, supporting the theoretical results.
引用
收藏
页码:460 / 494
页数:35
相关论文
共 28 条
  • [1] An abstract framework for parabolic PDEs on evolving spaces
    Alphonse, Amal
    Elliott, Charles M.
    Stinner, Bjoern
    [J]. PORTUGALIAE MATHEMATICA, 2015, 72 (01) : 1 - 46
  • [2] Aubin T., 1998, Springer Monographs in Mathematics
  • [3] The surface finite element method for pattern formation on evolving biological surfaces
    Barreira, R.
    Elliott, C. M.
    Madzvamuse, A.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (06) : 1095 - 1119
  • [4] Time-discrete higher order ALE formulations: a priori error analysis
    Bonito, Andrea
    Kyza, Irene
    Nochetto, Ricardo H.
    [J]. NUMERISCHE MATHEMATIK, 2013, 125 (02) : 225 - 257
  • [5] TIME-DISCRETE HIGHER-ORDER ALE FORMULATIONS: STABILITY
    Bonito, Andrea
    Kyza, Irene
    Nochetto, Ricardo H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 577 - 604
  • [6] Dahlquist G., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P384, DOI 10.1007/BF01932018
  • [7] A generic interface for parallel and adaptive discretization schemes: abstraction principles and the DUNE-FEM module
    Dedner, Andreas
    Kloefkorn, Robert
    Nolte, Martin
    Ohlberger, Mario
    [J]. COMPUTING, 2010, 90 (3-4) : 165 - 196
  • [8] Dziuk G, 2007, J COMPUT MATH, V25, P385
  • [9] Dziuk G, 2007, IMA J NUMER ANAL, V27, P262, DOI [10.1093/imanum/dr1023, 10.1093/imanum/drl023]
  • [10] Runge-Kutta time discretization of parabolic differential equations on evolving surfaces
    Dziuk, G.
    Lubich, Ch.
    Mansour, D.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) : 394 - 416