Palindromes and Sturmian words

被引:70
作者
Droubay, X
Pirillo, G
机构
[1] Univ Picardie, CURI, LaRIA, F-80000 Amiens, France
[2] CNR, IAMI, I-50134 Florence, Italy
关键词
subword complexity; Sturmian words; palindromes; standard words; morphisms;
D O I
10.1016/S0304-3975(97)00188-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An infinite word x over the alphabet A is Sturmian if and only if g(x)(n)= n + 1 for any integer n, where g(x)(n) is the number of distinct words of length n occurring in x. A palindrome is a word that can be read indistinctly from left to right or from right to left. We prove that x is Sturmian if and only if h(x)(n)= 1 + (n mod 2) for ally integer n, where h(x)(n) is the number of palindromes of length n occurring in x. An infinite word x over the alphabet A is generated by a morphism f if there exists a letter c is an element of A such that lim(n-->infinity) f(n)(c) = x. We prove the existence of a morphism that generates the palindromes of any infinite Sturmian word generated by a morphism. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 23 条
[1]  
Allouche J.-P., 1994, B BELG MATH SOC, V1, P133
[2]   Sturmian words, Lyndon words and trees [J].
Berstel, J ;
deLuca, A .
THEORETICAL COMPUTER SCIENCE, 1997, 178 (1-2) :171-203
[3]   DESCRIPTIONS OF THE CHARACTERISTIC SEQUENCE OF AN IRRATIONAL [J].
BROWN, TC .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1993, 36 (01) :15-21
[4]  
CHUAN WF, 1993, FIBONACCI QUART, V31, P251
[5]  
COVEN EM, 1973, MATH SYST THEORY, V7, P138
[6]  
CRISP D, 1993, J THEOR NOMBR BORDX, V5, P123
[7]  
Culik K. II, 1994, International Journal of Foundations of Computer Science, V5, P69, DOI 10.1142/S0129054194000050
[8]   A COMBINATORIAL PROPERTY OF THE FIBONACCI WORDS [J].
DELUCA, A .
INFORMATION PROCESSING LETTERS, 1981, 12 (04) :193-195
[9]   SOME COMBINATORIAL PROPERTIES OF STURMIAN WORDS [J].
DELUCA, A ;
MIGNOSI, F .
THEORETICAL COMPUTER SCIENCE, 1994, 136 (02) :361-385
[10]   Standard Sturmian morphisms [J].
deLuca, A .
THEORETICAL COMPUTER SCIENCE, 1997, 178 (1-2) :205-224