Robust model reference control for multivariable linear systems subject to parameter uncertainties

被引:34
|
作者
Duan, GR
Liu, WQ
Liu, GP
机构
[1] Queens Univ Belfast, Sch Mech & Mfg Engn, Belfast BT9 5AH, Antrim, North Ireland
[2] Curtin Univ Technol, Sch Comp, Perth, WA 6001, Australia
[3] Univ Nottingham, Sch Mech Mat Mfg Engn & Managment, Nottingham NG7 2RD, England
[4] Harbin Inst Technol, Dept Control Sci & Engn, Harbin 150006, Peoples R China
关键词
linear systems; model reference control; parameter uncertainties; robust stabilization; robust compensation; Sylvester matrix equations;
D O I
10.1243/0959651011541337
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust model reference control for multivariable linear systems with structural parameter uncertainties is considered. It is shown that the problem can be decomposed into two subproblems: a robust state feedback stabilization problem for multivariable linear systems subject to parameter uncertainties and a robust compensation problem. The latter concerns solution of three coefficient matrices such that four matrix equations are met and, simultaneously, the effect of the uncertainties to the tracking error is minimized. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, the robust compensation problem is turned into a minimization problem with quadratic cost and linear constraints. A set of linear equations is derived that determines the optimal solution to the minimization. An example illustrates the application of the proposed approach.
引用
收藏
页码:599 / 610
页数:12
相关论文
共 50 条
  • [1] Robust model-reference control for descriptor linear systems subject to parameter uncertainties
    Guangren DUAN 1
    2.Department of Mathematics
    Journal of Control Theory and Applications, 2007, (03) : 213 - 220
  • [2] Robust model-reference control for descriptor linear systems subject to parameter uncertainties
    Duan G.
    Zhang B.
    Journal of Control Theory and Applications, 2007, 5 (3): : 213 - 220
  • [3] Robust model reference control for multivariable linear systems: A parametric approach
    Duan, GR
    Liu, WQ
    Liu, GP
    ROBUST CONTROL DESIGN 2000, VOLS 1 & 2, 2000, 1-2 : 83 - 88
  • [4] Robust model reference control for uncertain second-order system subject to parameter uncertainties
    Tian, Guang-Tai
    Duan, Guang-Ren
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2022, 44 (01) : 88 - 104
  • [5] Robust model reference control for second-order descriptor linear systems subject to parameter uncertainties
    Tian, Guang-Tai
    Duan, Guang-Ren
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2022, 44 (03) : 658 - 675
  • [6] Fuzzy control of a class of multivariable nonlinear systems subject to parameter uncertainties: model reference approach
    Lam, HK
    Leung, FHF
    Tam, PKS
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2001, 26 (02) : 129 - 144
  • [7] Research on model reference robust control for multivariable linear system
    Jiang Xu
    Hua Jingyu
    Zhang Qinling
    ADVANCES IN MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-4, 2013, 712-715 : 2761 - +
  • [8] Robust model following control for a class of second-order dynamical systems subject to parameter uncertainties
    Duan, Guang-Ren
    Huang, Ling
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2008, 30 (02) : 115 - 142
  • [9] Robust H∞ control problem for delayed linear systems with parameter uncertainties
    Lu, GP
    Zheng, YF
    Chen, BM
    SYSTEM STRUCTURE AND CONTROL 1998 (SSC'98), VOLS 1 AND 2, 1998, : 631 - 636
  • [10] Ensemble control of linear systems with parameter uncertainties
    Kou, Kit Ian
    Liu, Yang
    Zhang, Dandan
    Tu, Yanshuai
    INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (07) : 1495 - 1508