The natural critical current density limit for Li7La3Zr2O12garnets

被引:107
作者
Flatscher, Florian [1 ]
Philipp, Martin [1 ]
Ganschow, Steffen [2 ]
Wilkening, H. Martin R. [1 ]
Rettenwander, Daniel [1 ]
机构
[1] Graz Univ Technol, Inst Chem & Technol Mat NAWI Graz, A-8010 Graz, Austria
[2] Leibniz Inst Kristallzuchtung, D-12489 Berlin, Germany
基金
奥地利科学基金会;
关键词
SOLID-STATE ELECTROLYTE; SURFACE-CHEMISTRY; GARNET; ELECTRODEPOSITION; TEMPERATURE; IMPEDANCE; BOUNDARIES; RESISTANCE; STABILITY; KINETICS;
D O I
10.1039/c9ta14177d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ceramic batteries equipped with Li-metal anodes are expected to double the energy density of conventional Li-ion batteries. Besides high energy densities, also high power is needed when batteries have to be developed for electric vehicles. Practically speaking, so-called critical current densities (CCD) higher than 3 mA cm(-2)are needed to realize such systems. As yet, this value has, however, not been achieved for garnet-type Li7La3Zr2O12(LLZO) being one of the most promising ceramic electrolytes. Most likely, CCD values are influenced by the area specific resistance (ASR) governing ionic transport across the Li|electrolyte interface. Here, single crystals of LLZO with adjusted ASR are used to quantify this relationship in a systematic manner. It turned out that CCD values exponentially decrease with increasing ASR. The highest obtained CCD value was as high as 280 mu A cm(-2). This value should be regarded as the room-temperature limit for LLZO when no external pressure is applied. Concluding, for polycrystalline samples either stack pressure or a significant increase of the interfacial area is needed to reach current densities equal or higher than the above-mentioned target value.
引用
收藏
页码:15782 / 15788
页数:7
相关论文
共 44 条
  • [1] Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
    Albertus, Paul
    Babinec, Susan
    Litzelman, Scott
    Newman, Aron
    [J]. NATURE ENERGY, 2018, 3 (01): : 16 - 21
  • [2] [Anonymous], 2019, EL VEH BATT MAT COST
  • [3] Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte
    Basappa, Rajendra Hongahally
    Ito, Tomoko
    Morimura, Takao
    Bekarevich, Raman
    Mitsuishi, Kazutaka
    Yamada, Hirotoshi
    [J]. JOURNAL OF POWER SOURCES, 2017, 363 : 145 - 152
  • [4] Contact between Garnet-Type Solid Electrolyte and Lithium Metal Anode: Influence on Charge Transfer Resistance and Short Circuit Prevention
    Basappa, Rajendra Hongahally
    Ito, Tomoko
    Yamada, Hirotoshi
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : A666 - A671
  • [5] Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte
    Cheng, Eric Jianfeng
    Sharafi, Asma
    Sakamoto, Jeff
    [J]. ELECTROCHIMICA ACTA, 2017, 223 : 85 - 91
  • [6] Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes
    Cheng, Lei
    Chen, Wei
    Kunz, Martin
    Persson, Kristin
    Tamura, Nobumichi
    Chen, Guoying
    Doeff, Marca
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (03) : 2073 - 2081
  • [7] The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
    Cheng, Lei
    Crumlin, Ethan J.
    Chen, Wei
    Qiao, Ruimin
    Hou, Huaming
    Lux, Simon Franz
    Zorba, Vassilia
    Russo, Richard
    Kostecki, Robert
    Liu, Zhi
    Persson, Kristin
    Yang, Wanli
    Cabana, Jordi
    Richardson, Thomas
    Chen, Guoying
    Doeff, Marca
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) : 18294 - 18300
  • [8] Fleig J, 1999, J AM CERAM SOC, V82, P3485, DOI 10.1111/j.1151-2916.1999.tb02270.x
  • [9] Foster A., 2016, THESIS
  • [10] Han F., 2015, NAT ENERGY, V54, P10440