The natural critical current density limit for Li7La3Zr2O12garnets

被引:110
作者
Flatscher, Florian [1 ]
Philipp, Martin [1 ]
Ganschow, Steffen [2 ]
Wilkening, H. Martin R. [1 ]
Rettenwander, Daniel [1 ]
机构
[1] Graz Univ Technol, Inst Chem & Technol Mat NAWI Graz, A-8010 Graz, Austria
[2] Leibniz Inst Kristallzuchtung, D-12489 Berlin, Germany
基金
奥地利科学基金会;
关键词
SOLID-STATE ELECTROLYTE; SURFACE-CHEMISTRY; GARNET; ELECTRODEPOSITION; TEMPERATURE; IMPEDANCE; BOUNDARIES; RESISTANCE; STABILITY; KINETICS;
D O I
10.1039/c9ta14177d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ceramic batteries equipped with Li-metal anodes are expected to double the energy density of conventional Li-ion batteries. Besides high energy densities, also high power is needed when batteries have to be developed for electric vehicles. Practically speaking, so-called critical current densities (CCD) higher than 3 mA cm(-2)are needed to realize such systems. As yet, this value has, however, not been achieved for garnet-type Li7La3Zr2O12(LLZO) being one of the most promising ceramic electrolytes. Most likely, CCD values are influenced by the area specific resistance (ASR) governing ionic transport across the Li|electrolyte interface. Here, single crystals of LLZO with adjusted ASR are used to quantify this relationship in a systematic manner. It turned out that CCD values exponentially decrease with increasing ASR. The highest obtained CCD value was as high as 280 mu A cm(-2). This value should be regarded as the room-temperature limit for LLZO when no external pressure is applied. Concluding, for polycrystalline samples either stack pressure or a significant increase of the interfacial area is needed to reach current densities equal or higher than the above-mentioned target value.
引用
收藏
页码:15782 / 15788
页数:7
相关论文
共 44 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]  
[Anonymous], 2019, EL VEH BATT MAT COST
[3]   Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte [J].
Basappa, Rajendra Hongahally ;
Ito, Tomoko ;
Morimura, Takao ;
Bekarevich, Raman ;
Mitsuishi, Kazutaka ;
Yamada, Hirotoshi .
JOURNAL OF POWER SOURCES, 2017, 363 :145-152
[4]   Contact between Garnet-Type Solid Electrolyte and Lithium Metal Anode: Influence on Charge Transfer Resistance and Short Circuit Prevention [J].
Basappa, Rajendra Hongahally ;
Ito, Tomoko ;
Yamada, Hirotoshi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :A666-A671
[5]   Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte [J].
Cheng, Eric Jianfeng ;
Sharafi, Asma ;
Sakamoto, Jeff .
ELECTROCHIMICA ACTA, 2017, 223 :85-91
[6]   Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes [J].
Cheng, Lei ;
Chen, Wei ;
Kunz, Martin ;
Persson, Kristin ;
Tamura, Nobumichi ;
Chen, Guoying ;
Doeff, Marca .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (03) :2073-2081
[7]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[8]  
Fleig J, 1999, J AM CERAM SOC, V82, P3485, DOI 10.1111/j.1151-2916.1999.tb02270.x
[9]  
Foster A., 2016, THESIS
[10]  
Han F., 2015, NAT ENERGY, V54, P10440