Caspase-8 cleaves its substrates from the plasma membrane upon CD95-induced apoptosis

被引:54
作者
Beaudouin, J. [1 ,2 ]
Liesche, C. [1 ,2 ]
Aschenbrenner, S. [1 ,2 ]
Hoerner, M. [1 ,2 ]
Eils, R. [1 ,2 ]
机构
[1] German Canc Res Ctr, IPMB, Dept Bioinformat & Funct Genom, D-69120 Heidelberg, Germany
[2] BioQuant, D-69120 Heidelberg, Germany
关键词
apoptosis; live-cell imaging; quantitative biology; caspase sensor; EXTRINSIC APOPTOSIS; CELL-DEATH; ACTIVATION; MECHANISM; PROTEIN; MODEL; PROCASPASE-8; REQUIREMENT; SPECIFICITY; INHIBITOR;
D O I
10.1038/cdd.2012.156
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Apoptosis occurs through a tightly regulated cascade of caspase activation. In the context of extrinsic apoptosis, caspase-8 is activated by dimerization inside a death receptor complex, cleaved by auto-proteolysis and subsequently released into the cytosol. This fully processed form of caspase-8 is thought to cleave its substrates BID and caspase-3. To test if the release is required for substrate cleavage, we developed a novel approach based on localization probes to quantitatively characterize the spatial-temporal activity of caspases in living single cells. Our study reveals that caspase-8 is significantly more active at the plasma membrane than within the cytosol upon CD95 activation. This differential activity is controlled by the cleavage of caspase-8 prodomain. As a consequence, targeting of caspase-8 substrates to the plasma membrane can significantly accelerate cell death. Subcellular compartmentalization of caspase-8 activity may serve to restrict enzymatic activity before mitochondrial pathway activation and offers new possibilities to interfere with apoptotic sensitivity of the cells. Cell Death and Differentiation (2013) 20, 599-610; doi:10.1038/cdd.2012.156; published online 11 January 2013
引用
收藏
页码:599 / 610
页数:12
相关论文
共 56 条
[1]   Quantitative analysis of pathways controlling extrinsic apoptosis in single cells [J].
Albeck, John G. ;
Burke, John M. ;
Aldridge, Bree B. ;
Zhang, Mingsheng ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
MOLECULAR CELL, 2008, 30 (01) :11-25
[2]   Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death [J].
Albeck, John G. ;
Burke, John M. ;
Spencer, Sabrina L. ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
PLOS BIOLOGY, 2008, 6 (12) :2831-2852
[3]   Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina [J].
Beaudouin, J ;
Gerlich, D ;
Daigle, N ;
Eils, R ;
Ellenberg, J .
CELL, 2002, 108 (01) :83-96
[4]   A unified model for apical caspase activation [J].
Boatright, KM ;
Renatus, M ;
Scott, FL ;
Sperandio, S ;
Shin, H ;
Pedersen, IM ;
Ricci, JE ;
Edris, WA ;
Sutherlin, DP ;
Green, DR ;
Salvesen, GS .
MOLECULAR CELL, 2003, 11 (02) :529-541
[5]   Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death [J].
Boldin, MP ;
Goncharov, TM ;
Goltsev, YV ;
Wallach, D .
CELL, 1996, 85 (06) :803-815
[6]   Lysosomal membrane permeabilization in cell death [J].
Boya, P. ;
Kroemer, G. .
ONCOGENE, 2008, 27 (50) :6434-6451
[7]   Aryl hydrocarbon receptor modulation of tumor necrosis factor-α-induced apoptosis and lysosomal disruption in a hepatoma model that is caspase-8-independent [J].
Caruso, JA ;
Mathieu, PA ;
Joiakim, A ;
Zhang, H ;
Reiners, JJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (16) :10954-10967
[8]   Probing nucleocytoplasmic transport by two-photon activation of PA-GFP [J].
Chen, Y ;
MacDonald, PJ ;
Skinner, JP ;
Patterson, GH ;
Müller, JD .
MICROSCOPY RESEARCH AND TECHNIQUE, 2006, 69 (03) :220-226
[9]   Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway:: Absolute requirement for removal of caspase-6 prodomain [J].
Cowling, V ;
Downward, J .
CELL DEATH AND DIFFERENTIATION, 2002, 9 (10) :1046-1056
[10]   A decade of caspases [J].
Degterev, A ;
Boyce, M ;
Yuan, JY .
ONCOGENE, 2003, 22 (53) :8543-8567