Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm

被引:32
作者
Jain, Pankaj K. [1 ]
Dubey, Abhishek [1 ,2 ]
Saba, Luca [3 ]
Khanna, Narender N. [4 ]
Laird, John R. [5 ]
Nicolaides, Andrew [6 ,7 ]
Fouda, Mostafa M. [8 ]
Suri, Jasjit S. [9 ]
Sharma, Neeraj [2 ]
机构
[1] Indian Inst Technol BHU, Sch Biomed Engn, Varanasi 221005, Uttar Pradesh, India
[2] Shree Mata Vaishno Devi Univ, Dept Elect & Commun, Jammu 182301, India
[3] Azienda Osped Univ AOU, Dept Radiol, I-09100 Cagliari, Italy
[4] Indraprastha APOLLO Hosp, Dept Cardiol, New Delhi 110076, India
[5] Heart & Vasc Inst, Adventist Heath, St Helena, CA 94574 USA
[6] Vasc Screening & Diagnost Ctr, CY-2409 Nicosia, Cyprus
[7] Univ Nicosia Med Sch, CY-2409 Nicosia, Cyprus
[8] Idaho State Univ, Dept Elect & Comp Engn, Pocatello, ID 83209 USA
[9] Stroke Diagnost & Monitoring Div, AtheroPoint, Roseville, CA 95661 USA
关键词
atherosclerosis; stroke; CVD; ICA; CCA; plaque segmentation; deep learning; UNet; UNet plus plus; UNet plus plus plus; Attention-UNet; INTIMA-MEDIA THICKNESS; IMT MEASUREMENT; INTRAVASCULAR ULTRASOUND; LEVEL SET; VARIABILITY; VALIDATION; BENCHMARKING; COMMON; CLASSIFICATION; ALGORITHMS;
D O I
10.3390/jcdd9100326
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment.
引用
收藏
页数:30
相关论文
共 106 条
  • [1] Acharya R., 2007, Advances in cardiac signal processing
  • [2] Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification
    Acharya, U. R.
    Mookiah, M. R. K.
    Sree, S. Vinitha
    Yanti, R.
    Martis, R. J.
    Saba, L.
    Molinari, F.
    Guerriero, S.
    Suri, J. S.
    [J]. ULTRASCHALL IN DER MEDIZIN, 2014, 35 (03): : 237 - 245
  • [3] Heart rate variability: a review
    Acharya, U. Rajendra
    Joseph, K. Paul
    Kannathal, N.
    Lim, Choo Min
    Suri, Jasjit S.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (12) : 1031 - 1051
  • [4] Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization
    Acharya, U. Rajendra
    Faust, Oliver
    Sree, Vinitha S.
    Alvin, A. P. C.
    Krishnamurthi, Ganapathy
    Seabra, Jose C. R.
    Sanches, Joao
    Suri, Jasjit S.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 110 (01) : 66 - 75
  • [5] Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0
    Agarwal, Mohit
    Agarwal, Sushant
    Saba, Luca
    Chabert, Gian Luca
    Gupta, Suneet
    Carriero, Alessandro
    Pasche, Alessio
    Danna, Pietro
    Mehmedovic, Armin
    Faa, Gavino
    Shrivastava, Saurabh
    Jain, Kanishka
    Jain, Harsh
    Jujaray, Tanay
    Singh, Inder M.
    Turk, Monika
    Chadha, Paramjit S.
    Johri, Amer M.
    Khanna, Narendra N.
    Mavrogeni, Sophie
    Laird, John R.
    Sobel, David W.
    Miner, Martin
    Balestrieri, Antonella
    Sfikakis, Petros P.
    Tsoulfas, George
    Misra, Durga Prasanna
    Agarwal, Vikas
    Kitas, George D.
    Teji, Jagjit S.
    Al-Maini, Mustafa
    Dhanjil, Surinder K.
    Nicolaides, Andrew
    Sharma, Aditya
    Rathore, Vijay
    Fatemi, Mostafa
    Alizad, Azra
    Krishnan, Pudukode R.
    Yadav, Rajanikant R.
    Nagy, Frence
    Kincses, Zsigmond Tamas
    Ruzsa, Zoltan
    Naidu, Subbaram
    Viskovic, Klaudija
    Kalra, Manudeep K.
    Suri, Jasjit S.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [6] Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm
    Araki, Tadashi
    Jain, Pankaj K.
    Suri, Harman S.
    Londhe, Narendra D.
    Ikeda, Nobutaka
    El-Baz, Ayman
    Shrivastava, Vimal K.
    Saba, Luca
    Nicolaides, Andrew
    Shafique, Shoaib
    Laird, John R.
    Gupta, Ajay
    Suri, Jasjit S.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 80 : 77 - 96
  • [7] Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches
    Araki, Tadashi
    Kumar, P. Krishna
    Suri, Harman S.
    Ikeda, Nobutaka
    Gupta, Ajay
    Saba, Luca
    Rajan, Jeny
    Lavra, Francesco
    Sharma, Aditya M.
    Shafique, Shoaib
    Nicolaides, Andrew
    Laird, John R.
    Suri, Jasjit S.
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (07)
  • [8] PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology
    Araki, Tadashi
    Ikeda, Nobutaka
    Shukla, Devarshi
    Jain, Pankaj K.
    Londhe, Narendra D.
    Shrivastava, Vimal K.
    Banchhor, Sumit K.
    Saba, Luca
    Nicolaides, Andrew
    Shafique, Shoaib
    Laird, John R.
    Suri, Jasjit S.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 128 : 137 - 158
  • [9] Shape-Based Approach for Coronary Calcium Lesion Volume Measurement on Intravascular Ultrasound Imaging and Its Association With Carotid Intima-Media Thickness
    Araki, Tadashi
    Ikeda, Nobutaka
    Dey, Nilanjan
    Acharjee, Suvojit
    Molinari, Filippo
    Saba, Luca
    Cuadrado Godia, Elisa
    Nicolaides, Andrew
    Suri, Jasjit S.
    [J]. JOURNAL OF ULTRASOUND IN MEDICINE, 2015, 34 (03) : 469 - 482
  • [10] Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473