New anisotropic models from isotropic solutions

被引:32
作者
Maharaj, SD [1 ]
Chaisi, M
机构
[1] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Sci, ZA-4041 Durban, South Africa
[2] Natl Univ Lesotho, Dept Math & Comp Sci, Roma 180, Lesotho
关键词
astrophysics; Einstein equations; dense stars;
D O I
10.1002/mma.665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an algorithm that produces a new solution to the Einstein field equations, with an anisotropic matter distribution, from a given seed isotropic solution. The new solution is expressed in terms of integrals of known functions, and the integration can be completed in principle. The applicability of this technique is demonstrated by generating anisotropic isothermal spheres and anisotropic constant density Schwarzschild spheres. Both of these solutions are expressed in closed form in terms of elementary functions, and this facilitates physical analysis. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:67 / 83
页数:17
相关论文
共 19 条
[1]   ANISOTROPIC SPHERES IN GENERAL RELATIVITY [J].
BOWERS, RL ;
LIANG, EPT .
ASTROPHYSICAL JOURNAL, 1974, 188 (03) :657-665
[2]   Compact anisotropic spheres with prescribed energy density [J].
Chaisi, M ;
Maharaj, SD .
GENERAL RELATIVITY AND GRAVITATION, 2005, 37 (07) :1177-1189
[3]  
CHAISI M, 2005, ANISTROPIC SPHERES M
[4]   Anisotropic stars II: Stability [J].
Dev, K ;
Gleiser, M .
GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (08) :1435-1457
[5]   Anisotropic stars: Exact solutions [J].
Dev, K ;
Gleiser, M .
GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (11) :1793-1818
[6]   ANISOTROPIC SPHERES WITH VARIABLE-ENERGY DENSITY IN GENERAL-RELATIVITY [J].
GOKHROO, MK ;
MEHRA, AL .
GENERAL RELATIVITY AND GRAVITATION, 1994, 26 (01) :75-84
[7]   Anisotropic geodesic fluid spheres in general relativity [J].
Herrera, L ;
Martin, J ;
Ospino, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (10) :4889-4897
[8]   Spherically symmetric dissipative anisotropic fluids: A general study [J].
Herrera, L ;
Di Prisco, A ;
Martin, J ;
Ospino, J ;
Santos, NO ;
Troconis, O .
PHYSICAL REVIEW D, 2004, 69 (08) :12
[9]   Static charged perfect fluid spheres in general relativity [J].
Ivanov, BV .
PHYSICAL REVIEW D, 2002, 65 (10)
[10]   Exact solutions for the Tikekar superdense star [J].
Maharaj, SD ;
Leach, PGL .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (01) :430-437