One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries

被引:74
作者
Qiao, Hui [1 ]
Xiao, Lifen [1 ]
Zheng, Zhi [2 ]
Liu, Haowen [3 ]
Jia, Falong [1 ]
Zhang, Lizhi [1 ]
机构
[1] Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Peoples R China
[2] Xuchang Univ, Inst Surface Micro & Nano Mat, Xuchang 461000, Peoples R China
[3] S Cent Univ Natl, Key Lab Catalysis & Mat Sci Hubei Prov, Coll Chem & Mat Sci, Wuhan 430074, Peoples R China
基金
美国国家科学基金会;
关键词
CoO; Carbon; Hybrid microspheres; Solvothermal; Lithium-ions batteries;
D O I
10.1016/j.jpowsour.2008.06.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a one-pot method to synthesize CoO/C hybrid microspheres via a solvothermal approach. The resulting samples were characterized by thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy and charge-discharge test. X-ray diffraction analysis revealed that the as-prepared samples possessed poor crystalline characteristics and were transformed into crystalline materials after thermal treatment. Field-emission scanning electron microscope images showed that the surfaces of these as-prepared spheres were relatively smooth and of about 2.2 mu m in diameter. The diameters of the spheres kept unchanged after being annealed at 800 degrees C in a high purity nitrogen atmosphere under ambient pressure. The preliminary electrochemical test found that the annealed CoO/C hybrid microspheres exhibited an ultrahigh initial discharge capacity of 1481.4 mAh g(-1) in the potential range of 3.0-0.01 V. This value was much higher than that of CoO nanoparticles. Although the capacity of the second discharge cycle decayed to 506.2 mAh g(-1), the annealed CoO/C hybrid microspheres anode exhibited very stable reversible capacity at about 345 mAh g(-1) only after 10 cycles. This rapid stabilization ability was attributed to the matrix effect of carbon, which may effectively prevent the aggregation of small particles during charging-discharging process. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:486 / 491
页数:6
相关论文
共 27 条
[1]   Local structural characterization for electrochemical insertion-extraction of lithium into CoO with X-ray absorption spectroscopy [J].
Choi, HC ;
Lee, SY ;
Kim, SB ;
Kim, MG ;
Lee, MK ;
Shin, HJ ;
Lee, JS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (36) :9252-9260
[2]   On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium [J].
Courtney, IA ;
McKinnon, WR ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (01) :59-68
[3]   Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium [J].
Dedryvère, R ;
Laruelle, S ;
Grugeon, S ;
Poizot, P ;
Gonbeau, D ;
Tarascon, JM .
CHEMISTRY OF MATERIALS, 2004, 16 (06) :1056-1061
[4]   Preparation and characterization of CoO used as anodic material of lithium battery [J].
Do, JS ;
Weng, CH .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :482-486
[5]   Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries [J].
Fan, J ;
Wang, T ;
Yu, CZ ;
Tu, B ;
Jiang, ZY ;
Zhao, DY .
ADVANCED MATERIALS, 2004, 16 (16) :1432-+
[6]   Structural transformations in lithiated η′-Cu6Sn5 electrodes probed by in situ Mossbauer spectroscopy and X-ray diffraction [J].
Fransson, L ;
Nordström, E ;
Edström, K ;
Häggström, L ;
Vaughey, JT ;
Thackeray, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (06) :A736-A742
[7]   Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery [J].
Gao, XP ;
Bao, JL ;
Pan, GL ;
Zhu, HY ;
Huang, PX ;
Wu, F ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (18) :5547-5551
[8]   Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes [J].
Han, SJ ;
Jang, BC ;
Kim, T ;
Oh, SM ;
Hyeon, T .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (11) :1845-1850
[9]   Graphite-metal oxide composites as anode for Li-ion batteries [J].
Huang, H ;
Kelder, EM ;
Schoonman, J .
JOURNAL OF POWER SOURCES, 2001, 97-8 :114-117
[10]   A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery [J].
Kang, YM ;
Song, MS ;
Kim, JH ;
Kim, HS ;
Park, MS ;
Lee, JY ;
Liu, HK ;
Dou, SX .
ELECTROCHIMICA ACTA, 2005, 50 (18) :3667-3673