共 27 条
One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries
被引:74
作者:
Qiao, Hui
[1
]
Xiao, Lifen
[1
]
Zheng, Zhi
[2
]
Liu, Haowen
[3
]
Jia, Falong
[1
]
Zhang, Lizhi
[1
]
机构:
[1] Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Peoples R China
[2] Xuchang Univ, Inst Surface Micro & Nano Mat, Xuchang 461000, Peoples R China
[3] S Cent Univ Natl, Key Lab Catalysis & Mat Sci Hubei Prov, Coll Chem & Mat Sci, Wuhan 430074, Peoples R China
基金:
美国国家科学基金会;
关键词:
CoO;
Carbon;
Hybrid microspheres;
Solvothermal;
Lithium-ions batteries;
D O I:
10.1016/j.jpowsour.2008.06.096
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
We report a one-pot method to synthesize CoO/C hybrid microspheres via a solvothermal approach. The resulting samples were characterized by thermogravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy and charge-discharge test. X-ray diffraction analysis revealed that the as-prepared samples possessed poor crystalline characteristics and were transformed into crystalline materials after thermal treatment. Field-emission scanning electron microscope images showed that the surfaces of these as-prepared spheres were relatively smooth and of about 2.2 mu m in diameter. The diameters of the spheres kept unchanged after being annealed at 800 degrees C in a high purity nitrogen atmosphere under ambient pressure. The preliminary electrochemical test found that the annealed CoO/C hybrid microspheres exhibited an ultrahigh initial discharge capacity of 1481.4 mAh g(-1) in the potential range of 3.0-0.01 V. This value was much higher than that of CoO nanoparticles. Although the capacity of the second discharge cycle decayed to 506.2 mAh g(-1), the annealed CoO/C hybrid microspheres anode exhibited very stable reversible capacity at about 345 mAh g(-1) only after 10 cycles. This rapid stabilization ability was attributed to the matrix effect of carbon, which may effectively prevent the aggregation of small particles during charging-discharging process. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:486 / 491
页数:6
相关论文