Understanding antimicrobial discovery and resistance from a metagenomic and metatranscriptomic perspective: advances and applications

被引:35
作者
Asante, Jonathan [1 ]
Sekyere, John Osei [2 ]
机构
[1] Univ KwaZulu Natal, Sch Lab Med & Med Sci, Coll Hlth Sci, Durban, South Africa
[2] Univ Pretoria, Sch Med, Dept Med Microbiol, Fac Hlth Sci, Pretoria, South Africa
来源
ENVIRONMENTAL MICROBIOLOGY REPORTS | 2019年 / 11卷 / 02期
关键词
INDIAN RIVER SEDIMENTS; HUMAN GUT MICROBIOME; ANTIBIOTIC-RESISTANCE; ACTIVATED-SLUDGE; READ ALIGNMENT; RIBOSOMAL-RNA; CURRENT STATE; LAST-RESORT; CD-HIT; GENES;
D O I
10.1111/1758-2229.12735
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Our inability to cultivate most microorganisms, specifically bacteria, in the laboratory has for many years restricted our view and understanding of the bacterial meta-resistome in all living and nonliving environments. As a result, reservoirs, sources and distribution of antibiotic resistance genes (ARGS) and antibiotic-producers, as well as the effects of human activity and antibiotics on the selection and dissemination of ARGs were not well comprehended. With the advances made in the fields of metagenomics and metatranscriptomics, many of the hitherto little-understood concepts are becoming clearer. Further, the discovery of antibiotics such as lugdinin and lactocillin from the human microbiota, buttressed the importance of these new fields. Metagenomics and metatranscriptomics are becoming important clinical diagnostic tools for screening and detecting pathogens and ARGs, assessing the effects of antibiotics, other xenobiotics and human activity on the environment, characterizing the microbiome and the environmental resistome with lesser turnaround time and decreasing cost, as well as discovering antibiotic-producers. However, challenges with accurate binning, skewed ARGs databases, detection of less abundant and allelic variants of ARGs and efficient mobilome characterization remain. Ongoing efforts in long-read, phased- and single-cell sequencing, strain-resolved binning, chromosomal-conformation capture, DNA-methylation binning and deep-learning bioinformatic approaches offer promising prospects in reconstructing complete strain-level genomes and mobilomes from metagenomes.
引用
收藏
页码:62 / 86
页数:25
相关论文
共 155 条
[1]   Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome [J].
Abubucker, Sahar ;
Segata, Nicola ;
Goll, Johannes ;
Schubert, Alyxandria M. ;
Izard, Jacques ;
Cantarel, Brandi L. ;
Rodriguez-Mueller, Beltran ;
Zucker, Jeremy ;
Thiagarajan, Mathangi ;
Henrissat, Bernard ;
White, Owen ;
Kelley, Scott T. ;
Methe, Barbara ;
Schloss, Patrick D. ;
Gevers, Dirk ;
Mitreva, Makedonka ;
Huttenhower, Curtis .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (06)
[2]   Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis [J].
Aguiar-Pulido, Vanessa ;
Huang, Wenrui ;
Suarez-Ulloa, Victoria ;
Cickovski, Trevor ;
Mathee, Kalai ;
Narasimhan, Giri .
EVOLUTIONARY BIOINFORMATICS, 2016, 12 :5-16
[3]   Call of the wild: antibiotic resistance genes in natural environments [J].
Allen, Heather K. ;
Donato, Justin ;
Wang, Helena Huimi ;
Cloud-Hansen, Karen A. ;
Davies, Julian ;
Handelsman, Jo .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (04) :251-259
[4]  
Alneberg J., 2018, Bioinformatic methods in metagenomics
[5]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[6]   Diagnostic Strategy Used To Establish Etiologies of Encephalitis in a Prospective Cohort of Patients in England [J].
Ambrose, H. E. ;
Granerod, J. ;
Clewley, J. P. ;
Davies, N. W. S. ;
Keir, G. ;
Cunningham, R. ;
Zuckerman, M. ;
Mutton, K. J. ;
Ward, K. N. ;
Ijaz, S. ;
Crowcroft, N. S. ;
Brown, D. W. G. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2011, 49 (10) :3576-3583
[7]   DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data [J].
Arango-Argoty, Gustavo ;
Garner, Emily ;
Prudent, Amy ;
Heath, Lenwood S. ;
Vikesland, Peter ;
Zhang, Liqing .
MICROBIOME, 2018, 6
[8]   Influence of a Non-Hospital Medical Care Facility on Antimicrobial Resistance in Wastewater [J].
Baeumlisberger, Mathias ;
Youssar, Loubna ;
Schilhabel, Markus B. ;
Jonas, Daniel .
PLOS ONE, 2015, 10 (03)
[9]   Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation [J].
Beaulaurier, John ;
Zhu, Shijia ;
Deikus, Gintaras ;
Mogno, Ilaria ;
Zhang, Xue-Song ;
Davis-Richardson, Austin ;
Canepa, Ronald ;
Triplett, Eric W. ;
Faith, Jeremiah J. ;
Sebra, Robert ;
Schadt, Eric E. ;
Fang, Gang .
NATURE BIOTECHNOLOGY, 2018, 36 (01) :61-+
[10]   metaxa2: improved identification and taxonomic classification of small and large subunit rRNA in metagenomic data [J].
Bengtsson-Palme, Johan ;
Hartmann, Martin ;
Eriksson, Karl Martin ;
Pal, Chandan ;
Thorell, Kaisa ;
Larsson, Dan Goran Joakim ;
Nilsson, Rolf Henrik .
MOLECULAR ECOLOGY RESOURCES, 2015, 15 (06) :1403-1414