Annular Khovanov homology and knotted Schur-Weyl representations

被引:28
作者
Grigsby, J. Elisenda [1 ]
Licata, Anthony M. [2 ]
Wehrli, Stephan M. [3 ]
机构
[1] Boston Coll, Dept Math, 5th Floor Maloney, Chestnut Hill, MA 02467 USA
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT, Australia
[3] Syracuse Univ, Dept Math, 215 Carnegie, Syracuse, NY 13244 USA
基金
澳大利亚研究理事会;
关键词
SUTURED FLOER HOMOLOGY; QUANTUM SL(2); ALGEBRAS; CATEGORIFICATION; COBORDISMS; INVARIANT; CATEGORIES; TANGLES; COVERS;
D O I
10.1112/S0010437X17007540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L A I be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of s l 2 ( <^>), the exterior current algebra of s l 2. When L is an m - framed n - cable of a knot K S 3, its sutured annular Khovanov homology carries a commuting action of the symmetric group S n. One therefore obtains a ` knotted' Schur{Weyl representation that agrees with classical s l 2 Schur{Weyl duality when K is the Seifert- framed unknot.
引用
收藏
页码:459 / 502
页数:45
相关论文
共 43 条
[1]  
Asaeda M. M., 2004, Algebr. Geom. Topol, V4, P1177, DOI [10.2140/agt.2004.4.1177, DOI 10.2140/AGT.2004.4.1177]
[2]   SUTURED KHOVANOV HOMOLOGY, HOCHSCHILD HOMOLOGY, AND THE OZSVATH-SZABO SPECTRAL SEQUENCE [J].
Auroux, Denis ;
Grigsby, J. Elisenda ;
Wehrli, Stephan M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) :7103-7131
[3]   Khovanov-Seidel quiver algebras and bordered Floer homology [J].
Auroux, Denis ;
Grigsby, J. Elisenda ;
Wehrli, Stephan M. .
SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01) :1-55
[4]   CATEGORIFIED INVARIANTS AND THE BRAID GROUP [J].
Baldwin, John A. ;
Grigsby, J. Elisenda .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) :2801-2814
[5]   Khovanov's homology for tangle and cobordisms [J].
Bar-Natan, D .
GEOMETRY & TOPOLOGY, 2005, 9 :1443-1499
[6]  
Beliakova A, 2016, PREPRINT
[7]   Trace decategorification of categorified quantum sl2 [J].
Beliakova, Anna ;
Habiro, Kazuo ;
Lauda, Aaron D. ;
Zivkovic, Marko .
MATHEMATISCHE ANNALEN, 2017, 367 (1-2) :397-440
[8]  
BERNSTEIN J, 1990, PROG MATH, V92, P417
[9]  
Brundan J, 2011, MOSC MATH J, V11, P685
[10]  
Carter J.S., 2004, Low-Dimensional Topology, III, Encyclopaedia of Mathematical Sciences, V142