Direct observation of DNA knots using a solid-state nanopore

被引:4
作者
Plesa, Calin [1 ]
Verschueren, Daniel [1 ]
Pud, Sergii [1 ]
van der Torre, Jaco [1 ]
Ruitenberg, Justus W. [1 ]
Witteveen, Menno J. [1 ]
Jonsson, Magnus P. [1 ,6 ]
Grosberg, Alexander Y. [2 ,3 ]
Rabin, Yitzhak [4 ,5 ]
Dekker, Cees [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, Dept Bionanosci, Maasweg 9, NL-2629 HZ Delft, Netherlands
[2] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA
[3] NYU, Ctr Soft Matter Res, 4 Washington Pl, New York, NY 10003 USA
[4] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[5] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel
[6] Linkoping Univ, Dept Sci & Technol, Campus Norrkoping, SE-60174 Norrkoping, Sweden
基金
欧洲研究理事会;
关键词
TRANSLOCATION; MOLECULES; PROTEINS; VELOCITY; IV;
D O I
10.1038/NNANO.2016.153
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Long DNA molecules can self-entangle into knots. Experimental techniques for observing such DNA knots (primarily gel electrophoresis) are limited to bulk methods and circular molecules below 10 kilobase pairs in length. Here, we show that solid-state nanopores can be used to directly observe individual knots in both linear and circular single DNA molecules of arbitrary length. The DNA knots are observed as short spikes in the nanopore current traces of the traversing DNA molecules and their detection is dependent on a sufficiently high measurement resolution, which can be achieved using high-concentration LiCI buffers. We study the percentage of molecules with knots for DNA molecules of up to 166 kilobase pairs in length and find that the knotting occurrence rises with the length of the DNA molecule, consistent with a constant knotting probability per unit length. Our experimental data compare favourably with previous simulation based predictions for long polymers. From the translocation time of the knot through the nanopore, we estimate that the majority of the DNA knots are tight, with remarkably small sizes below 100 nm. In the case of linear molecules, we also observe that knots are able to slide out on application of high driving forces (voltage).
引用
收藏
页码:1093 / 1097
页数:5
相关论文
共 47 条
[1]   Directly Observing the Motion of DNA Molecules near Solid-State Nanopores [J].
Ando, Genki ;
Hyun, Changbae ;
Li, Jiali ;
Mitsui, Toshiyuki .
ACS NANO, 2012, 6 (11) :10090-10097
[2]   Tying a molecular knot with optical tweezers [J].
Arai, Y ;
Yasuda, R ;
Akashi, K ;
Harada, Y ;
Miyata, H ;
Kinosita, K ;
Itoh, H .
NATURE, 1999, 399 (6735) :446-448
[3]   Behavior of complex knots in single DNA molecules [J].
Bao, XR ;
Lee, HJ ;
Quake, SR .
PHYSICAL REVIEW LETTERS, 2003, 91 (26)
[4]   Interpreting the Conductance Blockades of DNA Translocations through Solid-State Nanopores [J].
Carlsen, Autumn T. ;
Zahid, Osama K. ;
Ruzicka, Jan ;
Taylor, Ethan W. ;
Hall, Adam R. .
ACS NANO, 2014, 8 (05) :4754-4760
[5]   Metastable Tight Knots in Semiflexible Chains [J].
Dai, Liang ;
Renner, C. Benjamin ;
Doyle, Patrick S. .
MACROMOLECULES, 2014, 47 (17) :6135-6140
[6]  
Deguchi T., 1994, J. Knot. Theor. Ramif, V03, P321, DOI DOI 10.1142/S0218216594000241
[7]   Topoisomerase IV, alone, unknots DNA in E-coli [J].
Deibler, RW ;
Rahmati, S ;
Zechiedrich, EL .
GENES & DEVELOPMENT, 2001, 15 (06) :748-761
[8]   Fractal dimension and localization of DNA knots [J].
Ercolini, Erika ;
Valle, Francesco ;
Adamcik, Jozef ;
Witz, Guillaume ;
Metzler, Ralf ;
De Los Rios, Paolo ;
Roca, Joaquim ;
Dietler, Giovanni .
PHYSICAL REVIEW LETTERS, 2007, 98 (05)
[9]   Recapturing and trapping single molecules with a solid-state nanopore [J].
Gershow, Marc ;
Golovchenko, J. A. .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :775-779
[10]   A few notes about polymer knots [J].
Grosberg, A. Y. .
POLYMER SCIENCE SERIES A, 2009, 51 (01) :70-79