Exact interval propagation for the efficient solution of position analysis problems on planar linkages

被引:5
作者
Celaya, Enric [1 ]
Creemers, Tom [1 ]
Ros, Lluis [1 ]
机构
[1] Inst Robot & Informat Ind CSIC UPC, Barcelona 08028, Spain
关键词
Interval propagation; Planar linkages; Box approximation; Loop equation; Position analysis; Forward and inverse kinematics; KINEMATICS;
D O I
10.1016/j.mechmachtheory.2012.03.005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents an interval propagation algorithm for variables in planar single-loop linkages. Given intervals of allowed values for all variables, the algorithm provides, for every variable, the whole set of values, without overestimation, for which the linkage can actually be assembled. We show further how this algorithm can be integrated in a branch-and-prune search scheme, in order to solve the position analysis of general planar multi-loop linkages. Experimental results are included, comparing the method's performance with that of previous techniques given for the same task. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:116 / 131
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 2009, P IEEE INT C ROB AUT
[2]   The essence of constraint propagation [J].
Apt, KR .
THEORETICAL COMPUTER SCIENCE, 1999, 221 (1-2) :179-210
[3]  
Castellet A., 1998, THESIS TU CATALONIA
[4]   SOLVING MULTILOOP LINKAGES WITH LIMITED-RANGE JOINTS [J].
CELAYA, E ;
TORRAS, C .
MECHANISM AND MACHINE THEORY, 1994, 29 (03) :373-391
[5]  
Celaya E., 2002, ADV ROBOT KINEMATICS, P415
[6]  
Celaya E., 1993, COMPUTATIONAL KINEMA, P85
[7]  
Chartrand G., 1996, Graphs & Digraphs, V3rd
[8]   ON FINDING A CYCLE BASIS WITH A SHORTEST MAXIMAL CYCLE [J].
CHICKERING, DM ;
GEIGER, D ;
HECKERMAN, D .
INFORMATION PROCESSING LETTERS, 1995, 54 (01) :55-58
[9]  
Cortés J, 2005, SPRINGER TRAC ADV RO, V17, P75
[10]   Guaranteed solution of direct kinematic problems for general configurations of parallel manipulators [J].
Didrit, O ;
Petitot, M ;
Walter, E .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1998, 14 (02) :259-266