Fault detection of oil pump based on classify support vector machine

被引:0
|
作者
Tian, Jingwen [1 ]
Gao, Meijuan [1 ]
Li, Kai [2 ]
Zhou, Hao [2 ]
机构
[1] Beijing Union Univ, Dept Automat Control, Beijing, Peoples R China
[2] Beijing Univ Chem Technol, Sch Informat Sci, Beijing, Peoples R China
来源
2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7 | 2007年
关键词
statistical learning theory; support vector machine; oil pump; fault detection;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Statistical learning theory is introduced to fault detection of off pump. Considering the issues that the relationship between the fault of oil pump existent and fault information is a complicated and nonlinear system, and it is very difficult to found the process model to describe it The support vector machine (SVM) has the ability of strong nonlinear function approach and the ability of strong generalization and also has the feature of global optimization. In this paper, a fault detection method of oil pump based on SVM is presented, moreover, the genetic algorithm(GA) was used to optimize SVM parameters. With the ability of strong self-learning and well generalization of SVM, the detection method can truly diagnosticate the fault of oil pump by learning the fault information of oil pump. The real detection results show that this method is feasible and effective.
引用
收藏
页码:3040 / +
页数:2
相关论文
共 50 条
  • [1] A support vector machine framework for fault detection in molecular pump
    Yuan, X. L.
    Kai, J.
    Chen, Y.
    Zuo, G. Z.
    Zhuang, H. D.
    Li, J. H.
    Hu, J. S.
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2023, 60 (01) : 72 - 82
  • [2] Intrusion Detection Method Based on Classify Support Vector Machine
    Gao, Meijuan
    Tian, Jingwen
    Xia, Mingping
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 391 - 394
  • [3] Support vector machine based fault detection and diagnosis for HVAC systems
    Li J.
    Guo Y.
    Wall J.
    West S.
    International Journal of Intelligent Systems Technologies and Applications, 2019, 18 (1-2) : 204 - 222
  • [4] Support vector machine for fault detection in transmission line
    Malathi, V.
    Marimuthu, N. S.
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2009, 17 (01): : 13 - 18
  • [5] Fault detection in flotation processes based on deep learning and support vector machine
    Li, Zhong-mei
    Gui, Wei-hua
    Zhu, Jian-yong
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (09) : 2504 - 2515
  • [6] The fault diagnosis system with self-repair function for screw oil pump based on support vector machine
    Tian, Jingwen
    Gao, Meijuan
    Liu, Yanxia
    Zhou, Hao
    Li, Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-5, 2007, : 2144 - +
  • [7] Use of Support Vector Machine to Fault Detection in Biomethanation Process
    Acosta-Pavas, J. C.
    Robles-Rodriguez, C. E.
    Dumas, C.
    Cockx, A.
    Morchain, J.
    Aceves-Lara, C. A.
    19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2023, 583 : 176 - 186
  • [8] Support vector machine based fault detection approach for RFT-30 cyclotron
    Kong, Young Bae
    Lee, Eun Je
    Hur, Min Goo
    Park, Jeong Hoon
    Park, Yong Dae
    Yang, Seung Dae
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 834 : 143 - 148
  • [9] Support vector machine based fault detection in inverter-fed electric vehicle
    Mestha, Soumya Rani
    Prabhu, Nagesh
    ENERGY STORAGE, 2024, 6 (01)
  • [10] Efficient fault detection using support vector machine based hybrid expert system
    Kishore B.
    Satyanarayana M.R.S.
    Sujatha K.
    International Journal of System Assurance Engineering and Management, 2016, 7 (Suppl 1) : 34 - 40