Fixed Point Theorems in Ordered Banach Spaces and Applications to Nonlinear Integral Equations

被引:128
作者
Agarwal, Ravi P. [1 ,2 ]
Hussain, Nawab [1 ]
Taoudi, Mohamed-Aziz [3 ,4 ]
机构
[1] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[2] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[3] Ctr Univ Kelaa des Sraghna, Kelaa Des Sraghna 43000, Morocco
[4] Univ Cadi Ayyad, Lab Math & Dynam Populat, Fac Sci Semlalia, Marrakech 40000, Morocco
关键词
WEAK NONCOMPACTNESS; KRASNOSELSKII; EXISTENCE;
D O I
10.1155/2012/245872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some new common fixed point theorems for a pair of nonlinear mappings defined on an ordered Banach space. Our results extend several earlier works. An application is given to show the usefulness and the applicability of the obtained results.
引用
收藏
页数:15
相关论文
共 24 条
[1]   Fixed Point Theorems for ws-Compact Mappings in Banach Spaces [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Taoudi, Mohamed-Aziz .
FIXED POINT THEORY AND APPLICATIONS, 2010,
[2]  
[Anonymous], 1994, ANN SCI MATH QUEBEC
[3]  
[Anonymous], 1980, LECT NOTES PURE APPL
[4]  
APPELL J, 1984, B UNIONE MAT ITAL, V3B, P497
[5]   ON MEASURES OF WEAK NONCOMPACTNESS [J].
BANAS, J ;
RIVERO, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 151 :213-224
[6]  
Darbo G., 1955, Rend. Sem. Mat. Univ. Padova, V24, P84
[7]  
De Blasi F. S., 1997, B MATH SOC SCI MATH, V21, P259
[8]  
Dhage BC., 1999, B KOREAN MATH SOC, V36, P565
[9]   Nonlinear alternatives of Schauder and Krasnosel'skij types with applications to Hammerstein integral equations in L1 spaces [J].
Djebali, Smail ;
Sahnoun, Zahira .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (09) :2061-2075
[10]  
Dunford N., 1958, SCHWARTZ LINEAR OP 1