Structure and function of cyclin-dependent Pho85 kinase of Saccharomyces cerevisiae

被引:6
作者
Toh-e, A [1 ]
Nishizawa, M
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Bunkyo Ku, Tokyo 1130033, Japan
[2] Keio Univ, Sch Med, Dept Microbiol, Shinjuku Ku, Tokyo 1608582, Japan
关键词
Cdk; Cdk5; cyclin; Pcl; PHO85; phosphorylation; Saccharomyces cerevisiae;
D O I
10.2323/jgam.47.107
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Yeast Saccharomyces cerevisiae has five cyclin-dependent protein kinases (Cdks), Cdc28, Srb10, Kin28, Ctk1, and Pho85. Any of these Cdks requires a cyclin partner for its kinase activity and a Cdk/cyclin complex, thus produced, phosphorylates a set of specific substrate proteins to exert its function. The cyclin partners of Srb10, Kin28, and Ctk1 are Srb11, Ccl1, and Ctk2, respectively. In contrast to the fact that each of Srb10, Kin28, and Ctk1 has a single cyclin partner, Cdc28 and Pho85 are polygamous; Cdc28 has 9 cyclins and Pho85 has 10 cyclins. Among these Cdks, Kin28 and Cdc28 are essential Cdks and it is well known that Cdc28 kinase plays a major role in regulating cell cycle progression. Pho85 is a non-essential Cdk but its absence causes a broad spectrum of phenotypes such as constitutive expression of PHO5, inability to utilize nonfermentable carbon sources, defects in cell cycle progression, and so on. Pho85 homologues are expanding to higher eukaryotes. Pho85 is most closely related with Cdk5 in terms of the amino acid sequence. The functional analysis of the domains of Pho85 also supports the close relationship between Pho85 and Cdk5, in which it was shown that the method of regulation of these two kinases is similar. Furthermore, forced expression of the mammalian CDK5 gene in a pho85 Delta strain canceled a part of the pho85 defects. In this review, we summarize the functions of both Pho85/cyclin kinase and emphasize yeast Pho85 as valuable model systems to elucidate the functions of their homologues in other organisms.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 63 条
  • [1] Swi5 controls a novel wave of cyclin synthesis in late mitosis
    Aerne, BL
    Johnson, AL
    Toyn, JH
    Johnston, LH
    [J]. MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (04) : 945 - 956
  • [2] BISSON LF, 1982, GENETICS, V102, P341
  • [3] A cyclin-dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans
    Bussink, HJ
    Osmani, SA
    [J]. EMBO JOURNAL, 1998, 17 (14) : 3990 - 4003
  • [4] Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality
    Chae, T
    Kwon, YT
    Bronson, R
    Dikkes, P
    Li, E
    Tsai, LH
    [J]. NEURON, 1997, 18 (01) : 29 - 42
  • [5] Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase
    Chi, Y
    Huddleston, MJ
    Zhang, XL
    Young, RA
    Annan, RS
    Carr, SA
    Deshaies, RJ
    [J]. GENES & DEVELOPMENT, 2001, 15 (09) : 1078 - 1092
  • [6] CISMOWSKI MJ, 1995, MOL CELL BIOL, V15, P2983
  • [7] CRYSTAL-STRUCTURE OF CYCLIN-DEPENDENT KINASE-2
    DEBONDT, HL
    ROSENBLATT, J
    JANCARIK, J
    JONES, HD
    MORGAN, DO
    KIM, SH
    [J]. NATURE, 1993, 363 (6430) : 595 - 602
  • [8] ROLES AND REGULATION OF CLN-CDC28 KINASES AT THE START OF THE CELL-CYCLE OF SACCHAROMYCES-CEREVISIAE
    DIRICK, L
    BOHM, T
    NASMYTH, K
    [J]. EMBO JOURNAL, 1995, 14 (19) : 4803 - 4813
  • [9] CDC2 PHOSPHORYLATION IS REQUIRED FOR ITS INTERACTION WITH CYCLIN
    DUCOMMUN, B
    BRAMBILLA, P
    FELIX, MA
    FRANZA, BR
    KARSENTI, E
    DRAETTA, G
    [J]. EMBO JOURNAL, 1991, 10 (11) : 3311 - 3319
  • [10] CLB5 - A NOVEL B-CYCLIN FROM BUDDING YEAST WITH A ROLE IN S-PHASE
    EPSTEIN, CB
    CROSS, FR
    [J]. GENES & DEVELOPMENT, 1992, 6 (09) : 1695 - 1706