DIMAL: Deep Isometric Manifold Learning Using Sparse Geodesic Sampling

被引:22
作者
Pai, Gautam [1 ]
Talmon, Ronen [1 ]
Bronstein, Alex [1 ]
Kimmel, Ron [1 ]
机构
[1] Technion Israel Inst Technol, Haifa, Israel
来源
2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | 2019年
关键词
NONLINEAR DIMENSIONALITY REDUCTION; NEURAL-NETWORKS; EIGENMAPS;
D O I
10.1109/WACV.2019.00092
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper explores a fully unsupervised deep learning approach for computing distance-preserving maps that generate low-dimensional embeddings for a certain class of manifolds. We use the Siamese configuration to train a neural network to solve the problem of least squares multidimensional scaling for generating maps that approximately preserve geodesic distances. By training with only a few landmarks, we show a significantly improved local and non-local generalization of the isometric mapping as compared to analogous non-parametric counterparts. Importantly, the combination of a deep-learning framework with a multidimensional scaling objective enables a numerical analysis of network architectures to aid in understanding their representation power. This provides a geometric perspective to the generalizability of deep learning.
引用
收藏
页码:819 / 828
页数:10
相关论文
共 47 条
  • [1] Spectral multidimensional scaling
    Aflalo, Yonathan
    Kimmel, Ron
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (45) : 18052 - 18057
  • [2] [Anonymous], 2015, P 2015 EUR WORKSH 3D
  • [3] [Anonymous], 2016, ARXIV160707110
  • [4] [Anonymous], 2006, P BRIT MACHINE VISIO
  • [5] Basri R., 2017, INT C LEARN REPR
  • [6] Laplacian eigenmaps for dimensionality reduction and data representation
    Belkin, M
    Niyogi, P
    [J]. NEURAL COMPUTATION, 2003, 15 (06) : 1373 - 1396
  • [7] Bengio Y, 2004, ADV NEUR IN, V16, P177
  • [8] Bengio Y., 2007, Large-Scale Kernel Machines, V34, P1
  • [9] Subspace Least Squares Multidimensional Scaling
    Boyarski, Amit
    Bronstein, Alex M.
    Bronstein, Michael M.
    [J]. SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2017, 2017, 10302 : 681 - 693
  • [10] Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339