Ocular macrophage origin and heterogeneity during steady state and experimental choroidal neovascularization

被引:25
作者
Droho, Steven [1 ]
Thomson, Benjamin R. [2 ]
Makinde, Hadijat M. [3 ]
Cuda, Carla M. [3 ]
Perlman, Harris [3 ]
Lavine, Jeremy A. [1 ]
机构
[1] Northwestern Univ, Dept Ophthalmol, Feinberg Sch Med, 240 E Huron St,McGaw M343, Chicago, IL 60611 USA
[2] Northwestern Univ, Feinberg Sch Med, Feinberg Cardiovasc & Renal Res Inst, Div Nephrol & Hypertens,Dept Med, Chicago, IL 60611 USA
[3] Northwestern Univ, Dept Med, Div Rheumatol, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
Age-related macular degeneration (AMD); Choroidal neovascularization (CNV); Angiogenesis; Macrophage; FACTOR-H POLYMORPHISM; MACULAR DEGENERATION; CR3; CD11B/CD18; ANGIOGENESIS; MONOCYTES; RANIBIZUMAB; INHIBITION; CELL;
D O I
10.1186/s12974-020-02010-0
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Macrophages are heterogeneous cells that are necessary for experimental CNV, present in human CNV samples, and can display diverse functions, which are dependent upon both their origin and tissue microenvironment. Despite these associations, choroidal macrophage heterogeneity remains unexplored. Methods We performed multi-parameter flow cytometry on wildtype (WT) and Ccr2(-/-) mice after laser injury to identify macrophage subtypes, and determine which subsets originate from classical monocytes. To fate map tissue resident macrophages at steady state and after laser injury, we used the Cx3cr1(CreER/+) ; Rosa26(zsGFP/+) mouse model. We reanalyzed previously published single-cell RNA-seq of human choroid samples from healthy and nAMD patients to investigate human macrophage heterogeneity, disease association, and function. Results We identified 4 macrophage subsets in mice: microglia, MHCII(+)CD11c(-), MHCII(+)CD11c(+), and MHCII-. Microglia are tissue resident macrophages at steady state and unaffected by laser injury. At steady state, MHCII- macrophages are long lived, tissue resident macrophages, while MHCII(+)CD11c(-) and MHCII(+)CD11c(+) macrophages are partially replenished from blood monocytes. After laser injury, MHCII(+)CD11c(-) macrophages are entirely derived from classical monocytes, MHCII- macrophages originate from classical monocytes (90%) and an expansion of tissue resident macrophages (10%), and MHCII(+)CD11c(+) macrophages are derived from classical monocytes (70%), non-classical monocytes (10%), and an expansion of tissue resident macrophages (20%). Single-cell RNA-seq analysis of human choroid found 5 macrophage subsets: two MHCII(+)CD11C(-) and three MHCII(+)CD11C(+) populations. One MHCII(+)CD11C(+) subset was 78% derived from a patient with nAMD. Differential expression analysis identified up-regulation of pro-angiogenic gene expression in one MHCII(+)CD11C(-) and two MHCII(+)CD11C(+) subsets, including the disease-associated cluster. The upregulated MHCII(+)CD11C(-) pro-angiogenic genes were unique compared to the increased MHCII(+)CD11C(+) angiogenesis genes. Conclusions Macrophage origin impacts heterogeneity at steady state and after laser injury in mice. Both mice and human patients demonstrate similar macrophage subtypes. Two discrete pro-angiogenic macrophage populations exist in the human choroid. Targeting specific, pro-angiogenic macrophage subsets is a potential novel therapeutic for nAMD.
引用
收藏
页数:19
相关论文
共 49 条
[1]   Endoglin Promotes Angiogenesis in Cell- and Animal-Based Models of Retinal Neovascularization [J].
Barnett, Joshua M. ;
Suarez, Sandra ;
McCollum, Gary W. ;
Penn, John S. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (10) :6490-6498
[2]   Local partial depletion of CD11b+ cells and their influence on choroidal neovascularization using the CD11b-HSVTK mouse model [J].
Brockmann, Claudia ;
Kociok, Norbert ;
Dege, Sabrina ;
Davids, Anja-Maria ;
Brockmann, Tobias ;
Miller, Kelly R. ;
Joussen, Antonia M. .
ACTA OPHTHALMOLOGICA, 2018, 96 (07) :E789-E796
[3]   Ranibizumab versus verteporfin for neovascular age-related macular degeneration [J].
Brown, David M. ;
Kaiser, Peter K. ;
Michels, Mark ;
Soubrane, Gisele ;
Heier, Jeffrey S. ;
Kim, Robert Y. ;
Sy, Judy P. ;
Schneider, Susan .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 355 (14) :1432-1444
[4]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[5]   Macrophage physiology in the eye [J].
Chinnery, Holly R. ;
McMenamin, Paul G. ;
Dando, Samantha J. .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2017, 469 (3-4) :501-515
[6]  
Coroniti R, 2016, FRONT MOL BIOSCI FRO, V3
[7]   Modulating the hypoxia-inducible factor signaling pathway as a therapeutic modality to regulate retinal angiogenesis [J].
DeNiro, M. ;
Alsmadi, O. ;
Al-Mohanna, F. .
EXPERIMENTAL EYE RESEARCH, 2009, 89 (05) :700-717
[8]   CCN1/Cyr61-PI3K/AKT signaling promotes retinal neovascularization in oxygen-induced retinopathy [J].
Di, Yu ;
Zhang, Yiou ;
Nie, Qingzhu ;
Chen, Xiaolong .
INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2015, 36 (06) :1507-1518
[9]   Antagonism of PDGF-BB suppresses subretinal neovascularization and enhances the effects of blocking VEGF-A [J].
Dong, Aling ;
Seidel, Christopher ;
Snell, Daniel ;
Ekawardhani, Savira ;
Ahlskog, Julia K. J. ;
Baumann, Michael ;
Shen, Jikui ;
Iwase, Takeshi ;
Tian, Jing ;
Stevens, Rebecca ;
Hackett, Sean F. ;
Stumpp, Michael T. ;
Campochiaro, Peter A. .
ANGIOGENESIS, 2014, 17 (03) :553-562
[10]   Digestion of Whole Mouse Eyes for Multi-Parameter Flow Cytometric Analysis of Mononuclear Phagocytes [J].
Droho, Steven ;
Cuda, Carla M. ;
Lavine, Jeremy A. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (160) :1-20