In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified Gluconacetobacter xylinus

被引:53
作者
Fang, Ju [1 ]
Kawano, Shin [2 ]
Tajima, Kenji [3 ]
Kondo, Tetsuo [1 ]
机构
[1] Kyushu Univ, Grad Sch Bioresource & Bioenvironm Sci, Higashi Ku, 6-10-1 Hakozaki, Fukuoka 8128581, Japan
[2] Res Org Informat & Syst, Database Ctr Life Sci, Kashiwa, Chiba 2770871, Japan
[3] Hokkaido Univ, Fac Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan
关键词
CELLULOSE NANOPAPER STRUCTURES; BACTERIAL CELLULOSE; CURDLAN BIOSYNTHESIS; ACETOBACTER-XYLINUM; MICROBIAL CELLULOSE; EXOPOLYSACCHARIDES; POLYSACCHARIDES; SYNTHASE; GENES;
D O I
10.1021/acs.biomac.5b01075
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacterial cellulose pellicle produced by Gluconacetobacter xylinus (G. xylinus) is one of the best biobased materials having a unique supernetwork structure with remarkable physiochemical properties for a wide range of medical and tissue-engineering applications. It is still necessary to modify them to obtain materials suitable for biomedical use with satisfactory mechanical strength, biodegradability, and bioactivity. The aim of this research was to develop a gene-transformation route for the production of bacterial cellulose/Curdlan (beta-1,3-glucan) nanocomposites by separate but simultaneous in vivo synthesis of cellulose and Curdlan. Modification of the cellulose-nanofiber-producing system of G. xylinus enabled Curdlan to be synthesized simultaneously with cellulose nanofibers in vivo, resulting in biopreparation of nanocomposites. The obtained Curdlan/cellulose composites were characterized, and their properties were compared with those of normal bacterial cellulose pellicles, indicating that Curdlan mixed with the cellulose nanofibers at the nanoscale without disruption of the nanofiber network structure in the pellicle.
引用
收藏
页码:3154 / 3160
页数:7
相关论文
共 46 条
[1]   Engineering microporosity in bacterial cellulose scaffolds [J].
Backdahl, Henrik ;
Esguerra, Maricris ;
Delbro, Dick ;
Risberg, Bo ;
Gatenholm, Paul .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2008, 2 (06) :320-330
[2]   Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates [J].
Blaker, Jonny J. ;
Lee, Koon-Yang ;
Li, Xinxin ;
Menner, Angelika ;
Bismarck, Alexander .
GREEN CHEMISTRY, 2009, 11 (09) :1321-1326
[3]   Bacterial cellulose as a potential meniscus implant [J].
Bodin, Aase ;
Concaro, Sebastian ;
Brittberg, Mats ;
Gatenholm, Paul .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2007, 1 (05) :406-408
[4]   Bloengineering bacterial cellulose/poly(ethylene oxide) nanocomposites [J].
Brown, Elvie E. ;
Laborie, Marie-Pierre G. .
BIOMACROMOLECULES, 2007, 8 (10) :3074-3081
[5]   Cellulose biosynthesis: A model for understanding the assembly of biopolymers [J].
Brown, RM ;
Saxena, IM .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2000, 38 (1-2) :57-67
[6]   MEASUREMENT OF THE SURFACE FREE-ENERGY OF BACTERIAL-CELL SURFACES AND ITS RELEVANCE FOR ADHESION [J].
BUSSCHER, HJ ;
WEERKAMP, AH ;
VANDERMEI, HC ;
VANPELT, AWJ ;
DEJONG, HP ;
ARENDS, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1984, 48 (05) :980-983
[7]   In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites [J].
Chanliaud, E ;
Gidley, MJ .
PLANT JOURNAL, 1999, 20 (01) :25-35
[8]   Structural investigations of microbial cellulose produced in stationary and agitated culture [J].
Czaja, W ;
Romanovicz, D ;
Brown, RM .
CELLULOSE, 2004, 11 (3-4) :403-411
[9]   The future prospects of microbial cellulose in biomedical applications [J].
Czaja, Wojciech K. ;
Young, David J. ;
Kawecki, Marek ;
Brown, R. Malcolm, Jr. .
BIOMACROMOLECULES, 2007, 8 (01) :1-12
[10]   Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction [J].
Donot, F. ;
Fontana, A. ;
Baccou, J. C. ;
Schorr-Galindo, S. .
CARBOHYDRATE POLYMERS, 2012, 87 (02) :951-962