FUNCTIONAL EQUATION OF CHARACTERISTIC ELEMENTS OF ABELIAN VARIETIES OVER FUNCTION FIELDS (l ≠ p)

被引:1
|
作者
Pal, Aprameyo [1 ]
机构
[1] Heidelberg Univ, Math Inst, D-69120 Heidelberg, Germany
关键词
Iwasawa theory; Selmer group; Abelian variety; function field; ELLIPTIC-CURVES; SELMER GROUPS; TORSION POINTS; ROOT NUMBERS; THEOREMS; DUALITY;
D O I
10.1142/S1793042113501194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we apply methods from the number field case of Perrin-Riou [20] and Zabradi [32] in the function field setup. In Z(l)- and GL(2)-cases (l not equal p), we prove algebraic functional equations of the Pontryagin dual of Selmer group which give further evidence of the main conjectures of Iwasawa theory. We also prove some parity conjectures in commutative and non-commutative cases. As a consequence, we also get results on the growth behavior of Selmer groups in commutative and non-commutative extension of function fields.
引用
收藏
页码:705 / 735
页数:31
相关论文
共 50 条
  • [21] Modular Abelian Varieties Over Number Fields
    Guitart, Xavier
    Quer, Jordi
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (01): : 170 - 196
  • [22] The Iwasawa Main Conjecture for constant ordinary abelian varieties over function fields
    Lai, King Fai
    Longhi, Ignazio
    Tan, Ki-Seng
    Trihan, Fabien
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 112 : 1040 - 1058
  • [23] On Euler characteristics of Selmer groups for abelian varieties over global function fields
    Maria Valentino
    Archiv der Mathematik, 2016, 106 : 117 - 128
  • [24] Abelian varieties over finite fields and their groups of rational points
    Marseglia, Stefano
    Springer, Caleb
    ALGEBRA & NUMBER THEORY, 2025, 19 (03) : 521 - 550
  • [25] L-functions with large analytic rank and abelian varieties with large algebraic rank over function fields
    Douglas Ulmer
    Inventiones mathematicae, 2007, 167 : 379 - 408
  • [26] Counting abelian varieties over finite fields via Frobenius densities
    Achter, Jeffrey D.
    Altug, S. Ali
    Garcia, Luis
    Gordon, Julia
    Li, Wen -Wei
    Rued, Thomas
    ALGEBRA & NUMBER THEORY, 2023, 17 (07) : 1239 - 1280
  • [27] On the cyclicity of the rational points group of abelian varieties over finite fields
    Giangreco-Maidana, Alejandro J.
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 57 : 139 - 155
  • [28] On Selmer groups of abelian varieties over ℓ-adic Lie extensions of global function fields
    Andrea Bandini
    Maria Valentino
    Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 575 - 595
  • [29] On CM abelian varieties over imaginary quadratic fields
    Tonghai Yang
    Mathematische Annalen, 2004, 329 : 87 - 117
  • [30] On the Equation Yn = f(X) Over Function Fields of Positive Characteristic
    A. Pacheco
    Acta Mathematica Hungarica, 1998, 81 : 89 - 94