Single-Particle Mobility Analysis Enables Ratiometric Detection of Cancer Markers under Darkfield Tracking Microscopy

被引:7
|
作者
Chen, Yancao [1 ]
Tian, Yueyue [1 ]
Yang, Qian [1 ]
Shang, Jinhui [1 ]
Tang, Decui [1 ]
Xiong, Bin [1 ]
Zhang, Xiao-Bing [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Mol Sci & Biomed Lab, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
DYNAMIC LIGHT-SCATTERING; GOLD NANOPARTICLE PROBES; PLASMONIC NANOPARTICLES; PROTEIN-DETECTION; ANALYSIS NTA; ASSAY; IMMUNOASSAY; ANTIGEN; LEVEL; SIZE;
D O I
10.1021/acs.analchem.9b05512
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Here, we introduced a single-particle mobility analysis-based ratiometric strategy for quantitative detection of disease-related biomarkers using antibody-conjugated gold nanoparticles (AuNPs) as probes under darkfield tracking microscopy (DFTM). On the basis of the capability of discriminating nanoparticles with different hydrodynamic sizes and detecting the changes in hydrodynamic effect, single-particle mobility analysis enables us to determine the amount of aggregated and monodispersed nanoprobes for the sandwich-like immunoassay strategy, making it possible to quantify the biotargets by analyzing the relative changes in the aggregate-to-monomer ratio of nanoprobes. By using capture antibody and detection antibody conjugated AuNPs as nanoprobes, we demonstrated ratiometric detection of carcinoembryonic antigen (CEA) over a linear dynamic range from 50 to 750 pM, which is acceptable for clinical diagnostic analysis of CEA in tumor patients. This ratiometric detection technique exhibited excellent anti-interference ability in the presence of nonspecific proteins or complicated protein mixtures. It can be anticipated that this robust technique is promising for the accurate detection of disease biomarkers and other biomolecules for biochemical and diagnostic applications.
引用
收藏
页码:10233 / 10240
页数:8
相关论文
共 50 条
  • [1] Measuring the intravitreal mobility of nanomedicines with single-particle tracking microscopy
    Martens, Thomas F.
    Vercauteren, Dries
    Forier, Katrien
    Deschout, Hendrik
    Remaut, Katrien
    Paesen, Rik
    Ameloot, Marcel
    Engbersen, Johan F. J.
    Demeester, Jo
    De Smedt, Stefaan C.
    Braeckmans, Kevin
    NANOMEDICINE, 2013, 8 (12) : 1955 - 1968
  • [2] Single-particle tracking image microscopy
    Ritchie, K
    Kusumi, A
    BIOPHOTONICS, PT A, 2003, 360 : 618 - 634
  • [3] Photothermal Single-Particle Microscopy: Detection of a Nanolens
    Selmke, Markus
    Braun, Marco
    Cichos, Frank
    ACS NANO, 2012, 6 (03) : 2741 - 2749
  • [4] Scattering microscopy takes single-particle tracking to the next level
    Rita Strack
    Nature Methods, 2019, 16 : 455 - 455
  • [5] Single-Particle Tracking with Scanning Non-Linear Microscopy
    Travers, Theo
    Colin, Vincent G.
    Loumaigne, Matthieu
    Barille, Regis
    Gindre, Denis
    NANOMATERIALS, 2020, 10 (08) : 1 - 17
  • [6] Single-Particle Tracking with Scattering-Based Optical Microscopy
    Ye, Zhongju
    Wang, Xin
    Xiao, Lehui
    ANALYTICAL CHEMISTRY, 2019, 91 (24) : 15327 - 15334
  • [7] Scattering microscopy takes single-particle tracking to the next level
    Strack, Rita
    NATURE METHODS, 2019, 16 (06) : 455 - 455
  • [8] Cryogenic Electron Microscopy and Single-Particle Analysis
    Elmlund, Dominika
    Elmlund, Hans
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 84, 2015, 84 : 499 - 517
  • [9] 2-PHOTON MICROSCOPY FOR SINGLE-PARTICLE DETECTION
    BLANTON, SA
    DEHESTANI, A
    LIN, PC
    GUYOTSIONNEST, P
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 186 - PHYS
  • [10] Obstructed diffusion propagator analysis for single-particle tracking
    Weigel, Aubrey V.
    Ragi, Shankarachary
    Reid, Michael L.
    Chong, Edwin K. P.
    Tamkun, Michael M.
    Krapf, Diego
    PHYSICAL REVIEW E, 2012, 85 (04):