Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations

被引:13
作者
Li, Wei [1 ]
Zhang, Meirong [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-degeneracy; Sobolev constant; Periodic solution; Uniqueness; Superlinear beam equation; DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.aml.2008.03.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we will use some Sobolev constants to explicitly characterize a class of potentials q(t) is an element of L-P(R/TZ) for which the periodic linear beam equation u((4)) = q(t)u is non-degenerate. As an application, we will obtain the uniqueness of periodic solutions of a certain class of superlinear beam equations. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:314 / 319
页数:6
相关论文
共 14 条
[1]   On the structure of the set of bounded solutions on a periodic Lienard equation [J].
Campos, J ;
Torres, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (05) :1453-1462
[2]   Some disconjugacy criteria for differential equations with oscillatory coefficients [J].
Clark, S ;
Hinton, D .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (12-13) :1476-1489
[3]   Immunotherapeutic uses of CpG oligodeoxynucleotides [J].
Klinman, DM .
NATURE REVIEWS IMMUNOLOGY, 2004, 4 (04) :248-257
[4]  
MAGNUS W, 1979, HILLS EQUATIONS
[5]  
Meng G, 2006, ADV NONLINEAR STUD, V6, P563
[6]   Optimal bounds for bifurcation values of a superlinear periodic problem [J].
Ortega, R ;
Zhang, MR .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :119-132
[7]   The Floquet theory of the periodic Euler-Bernoulli equation [J].
Papanicolaou, VG ;
Kravvaritis, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 150 (01) :24-41
[8]   The periodic Euler-Bernoulli equation [J].
Papanicolaou, VG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (09) :3727-3759
[9]  
Pipes L.A., 1958, APPL MATH ENG PHYS, V2nd
[10]   Periodic solutions for ordinary differential equations with sublinear impulsive effects [J].
Qian, DB ;
Li, XY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (01) :288-303