Planck-scale distribution of nodal length of arithmetic random waves

被引:14
作者
Benatar, Jacques [1 ,2 ]
Marinucci, Domenico [3 ]
Wigman, Igor [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Univ Roma Tor Vergata, Dept Math, Via Ric Sci 1, I-00133 Rome, Italy
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2020年 / 141卷 / 02期
基金
欧洲研究理事会;
关键词
LATTICE POINTS; RANDOM EIGENFUNCTIONS; SETS; EQUIDISTRIBUTION; INTERSECTIONS; FLUCTUATIONS; NUMBER;
D O I
10.1007/s11854-020-0114-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nodal length of random toral Laplace eigenfunctions ("arithmetic random waves") restricted to decreasing domains ("shrinking balls"), all the way down to Planck scale. We find that, up to a natural scaling, for "generic" energies the variance of the restricted nodal length obeys the same asymptotic law as the total nodal length, and these are asymptotically fully correlated. This, among other things, allows for a statistical reconstruction of the full toral length based on partial information. One of the key novel ingredients of our work, borrowing from number theory, is the use of bounds for the so-called spectral quasi-correlations, i.e., unusually small sums of lattice points lying on the same circle.
引用
收藏
页码:707 / 749
页数:43
相关论文
共 41 条
[1]  
[Anonymous], 1974, Usp. Math. Nauk
[2]  
Berry M., 1983, USMG NATO ASI. Les Houches Session XXXVI on Chaotic Behaviour of Deterministic Systems, P171
[3]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[4]   Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature [J].
Berry, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (13) :3025-3038
[5]   A Problem on Sums of Two Squares [J].
Bombieri, Enrico ;
Bourgain, Jean .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (11) :3343-3407
[6]   ON TORAL EIGENFUNCTIONS AND THE RANDOM WAVE MODEL [J].
Bourgain, Jean .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (02) :611-630
[7]   On the Geometry of the Nodal Lines of Eigenfunctions of the Two-Dimensional Torus [J].
Bourgain, Jean ;
Rudnick, Zeev .
ANNALES HENRI POINCARE, 2011, 12 (06) :1027-1053
[8]   On the Number of Nodal Domains of Toral Eigenfunctions [J].
Buckley, Jeremiah ;
Wigman, Igor .
ANNALES HENRI POINCARE, 2016, 17 (11) :3027-3062
[9]   THE DISTRIBUTION OF THE LATTICE POINTS ON CIRCLES [J].
CILLERUELO, J .
JOURNAL OF NUMBER THEORY, 1993, 43 (02) :198-202
[10]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497