Solution Properties of a 3D Stochastic Euler Fluid Equation

被引:65
作者
Crisan, Dan [1 ]
Flandoli, Franco [2 ]
Holm, Darryl D. [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
[2] Univ Pisa, Dept Appl Math, Via Bonanno 25B, I-56126 Pisa, Italy
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Analytical properties; Stochastic fluid equations; Lie derivative estimates; MODELS;
D O I
10.1007/s00332-018-9506-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local well-posedness in regular spaces and a Beale-Kato-Majda blow-up criterion for a recently derived stochastic model of the 3D Euler fluid equation for incompressible flow. This model describes incompressible fluid motions whose Lagrangian particle paths follow a stochastic process with cylindrical noise and also satisfy Newton's second law in every Lagrangian domain.
引用
收藏
页码:813 / 870
页数:58
相关论文
共 46 条