Solution Properties of a 3D Stochastic Euler Fluid Equation

被引:65
作者
Crisan, Dan [1 ]
Flandoli, Franco [2 ]
Holm, Darryl D. [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
[2] Univ Pisa, Dept Appl Math, Via Bonanno 25B, I-56126 Pisa, Italy
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Analytical properties; Stochastic fluid equations; Lie derivative estimates; MODELS;
D O I
10.1007/s00332-018-9506-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local well-posedness in regular spaces and a Beale-Kato-Majda blow-up criterion for a recently derived stochastic model of the 3D Euler fluid equation for incompressible flow. This model describes incompressible fluid motions whose Lagrangian particle paths follow a stochastic process with cylindrical noise and also satisfy Newton's second law in every Lagrangian domain.
引用
收藏
页码:813 / 870
页数:58
相关论文
共 46 条
  • [1] [Anonymous], 1990, CAMBRIDGE STUDIES AD
  • [2] [Anonymous], CURRENT PROBLEMS MAT
  • [3] [Anonymous], 2016, JLAB DATA ANAL PACKA
  • [4] REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS
    BEALE, JT
    KATO, T
    MAJDA, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) : 61 - 66
  • [5] Brezezniak Z., 1991, Mathematical Models & Methods in Applied Sciences, V1, P41, DOI 10.1142/S0218202591000046
  • [6] CONSTANTIN P, 1953, DIFFER EQU, V21, P559
  • [7] A Stochastic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations
    Constantin, Peter
    Iyer, Gautam
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (03) : 330 - 345
  • [8] Cotter, 2018, ARXIV180109729
  • [9] Cotter C., 2018, ARXIV180205711
  • [10] Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics
    Cotter, C. J.
    Gottwald, G. A.
    Holm, D. D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2205):