Thermal stability of Cu-Nb microcomposite wires

被引:43
作者
Deng, Liping [1 ,3 ]
Han, Ke [2 ]
Wang, Bingshu [1 ,3 ]
Yang, Xiaofang [3 ]
Liu, Qing [3 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350116, Peoples R China
[2] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[3] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
基金
美国国家科学基金会; 新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Cu-Nb microcomposite wires; Interface density; Distortion/stress relaxation; Thermal stability; SEVERE PLASTIC-DEFORMATION; HIGH-STRENGTH; NANOCOMPOSITE WIRES; MAGNETIC-PROPERTIES; INTERNAL-STRESSES; COMPOSITE WIRES; QUASI-CRYSTALS; MICROSTRUCTURE; DIFFRACTION; ALLOYS;
D O I
10.1016/j.actamat.2015.08.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We studied the thermal stability of Cu-Nb microcomposite wires with Cu-Nb interface density up to 21.6 mu m(2)/mu m(3). This high density interface results in high hardness values. Annealing up to 500 degrees C caused no significant changes in interface density or grain size, and hardness values. At temperatures higher than 500 degrees C, however, hardness decreased rapidly. The higher the deformation strain, the more rapid the decreases in hardness. Differential scanning calorimetry showed a significant increment in heat flow above 500 degrees C, which is related to drop in crystallographic lattice distortion. Because of the high-density of interfaces between Cu and Nb, stress relaxation and recovery in Cu matrix are delayed compared to pure Cu. We observed pronounced grain growth and lattice distortion relaxation after annealing at 800 degrees C, but found neither precipitation nor detectable solid solution during the fabrication and annealing process. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 45 条
[1]  
Aaronson H.I., 1992, BOOK ASM METAL HDB
[2]  
[Anonymous], 2004, Recrystallization and Related Annealing Phenomena
[3]   The Bauschinger effect in drawn and annealed nanocomposite Cu-Nb wires [J].
Badinier, G. ;
Sinclair, C. W. ;
Allain, S. ;
Bouaziz, O. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 597 :10-19
[4]   Recrystallization of pure copper investigated by calorimetry and microhardness [J].
Benchabane, G. ;
Boumerzoug, Z. ;
Thibon, I. ;
Gloriant, T. .
MATERIALS CHARACTERIZATION, 2008, 59 (10) :1425-1428
[5]   Recrystallization of niobium single crystals deformed by ECAE [J].
Bernardi, Heide H. ;
Sandim, Hugo R. Z. ;
Verlinden, Bert ;
Raabe, D. .
RECRYSTALLIZATION AND GRAIN GROWTH III, PTS 1 AND 2, 2007, 558-559 :125-+
[6]   ULTRAFINE FILAMENTARY COMPOSITES [J].
BEVK, J .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1983, 13 :319-338
[7]   ANOMALOUS INCREASE IN STRENGTH OF INSITU FORMED CU-NB MULTIFILAMENTARY COMPOSITES [J].
BEVK, J ;
HARBISON, JP ;
BELL, JL .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (12) :6031-6038
[8]   AN ELECTRON-DIFFRACTION STUDY OF QUASI-CRYSTALS IN TI-37 AT-PERCENT MN AND TI-24 AT-PERCENT MN-13 AT-PERCENT FE ALLOYS [J].
BHASKARAN, TA ;
KRISHNAN, RV ;
RANGANATHAN, S .
BULLETIN OF MATERIALS SCIENCE, 1994, 17 (06) :795-810
[9]  
Botharova E., 2006, INT J MATER RES, V97, P1350
[10]   Microstructure and texture evolution of Cu-Nb composite wires [J].
Deng, Liping ;
Yang, Xiaofang ;
Han, Ke ;
Lu, Yafeng ;
Liang, Ming ;
Liu, Qing .
MATERIALS CHARACTERIZATION, 2013, 81 :124-133