Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems

被引:107
作者
Mohiuddine, S. A. [1 ]
Alamri, Badriah A. S. [1 ]
机构
[1] King Abdulaziz Univ, Operator Theory & Applicat Res Grp, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
关键词
Weighted lacunary equi-statistical convergence; Korovkin-type approximation theorems; Positive linear operators; Rate of convergence; Voronovskaya-type theorem; SUMMABILITY;
D O I
10.1007/s13398-018-0591-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notions of weighted lacunary statistical pointwise and uniform convergence and a kind of convergence which is lying between aforementioned convergence methods, namely, weighted lacunary equi-statistical convergence and obtain various implication results with supporting examples. We then apply our new concept of weighted lacunary equi-statistical convergence with a view to proving Korovkin and Voronovskaya type approximation theorems. We also construct an example with the help of generating functions type Meyer-Konig and Zeller which shows that our Korovkin-type theorem is stronger than its classical version. Moreover, we compute the rate of weighted lacunary equi-statistical convergence for operators in terms of modulus of continuity.
引用
收藏
页码:1955 / 1973
页数:19
相关论文
共 41 条
[1]   Statistical (C, 1) (E, 1) Summability and Korovkin's Theorem [J].
Acar, Tuncer ;
Mohiuddine, S. A. .
FILOMAT, 2016, 30 (02) :387-393
[2]   Weighted Equi-Statistical Convergence of the Korovkin Type Approximation Theorems [J].
Akdag, Sevda .
RESULTS IN MATHEMATICS, 2017, 72 (03) :1073-1085
[3]   Lacunary equi-statistical convergence of positive linear operators [J].
Aktuglu, Hueseyin ;
Gezer, Halil .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (03) :558-567
[4]   Korovkin Type Approximation Theorems via Lacunary Equistatistical Convergence [J].
Alotaibi, Abdullah ;
Mursaleen, M. .
FILOMAT, 2016, 30 (13) :3641-3647
[5]   The generalization of Meyer-Konig and Zeller operators by generating functions [J].
Altin, A ;
Dogru, O ;
Tasdelen, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (01) :181-194
[6]   Statistical convergence and ideal convergence for sequences of functions [J].
Balcerzak, Marek ;
Dems, Katarzyna ;
Komisarski, Andrzej .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :715-729
[7]   Weighted Lacunary Statistical Convergence [J].
Basarir, M. ;
Konca, S. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A1) :185-190
[8]  
Basarir M., 2014, Arab J. Math. Sci, V20, P250, DOI [DOI 10.1016/J.AJMSC.2013.09.002, 10.1016/j.ajmsc.2013.09.002]
[9]   Generalized weighted statistical convergence and application [J].
Belen, C. ;
Mohiuddine, S. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (18) :9821-9826
[10]   Some Weighted Equi-Statistical Convergence and Korovkin Type-Theorem [J].
Braha, Naim L. .
RESULTS IN MATHEMATICS, 2016, 70 (3-4) :433-446