Bloch Surface Wave-Coupled Emission at Ultraviolet Wavelengths

被引:38
作者
Badugu, Ramachandram [1 ]
Mao, Jieying [2 ]
Blair, Steve [3 ]
Zhang, Douguo [4 ]
Descrovi, Emiliano [5 ]
Angelini, Angelo [5 ]
Huo, Yiping [1 ]
Lakowicz, Joseph R. [1 ]
机构
[1] Univ Maryland, Sch Med, Ctr Fluorescence Spect, Dept Biochem & Mol Biol, 725 West Lombard St, Baltimore, MD 21201 USA
[2] Univ Utah, Dept Phys & Astron, 50 S Cent Campus Dr, Salt Lake City, UT 84112 USA
[3] Univ Utah, Dept Elect & Comp Engn, 50 S Cent Campus Dr, Salt Lake City, UT 84112 USA
[4] Univ Sci & Technol China, Dept Opt & Opt Engn, Inst Photon, Hefei 230026, Anhui, Peoples R China
[5] Polytech Univ Turin, Dept Appl Sci & Technol, Corso Daca Abruzzi 24, I-10129 Turin, Italy
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
METAL-ENHANCED FLUORESCENCE; PHOTONIC CRYSTAL; LABEL-FREE; PLASMONIC NANOANTENNAS; DETECTION INSTRUMENT; QUANTUM DOTS; ALUMINUM; RESONANCE;
D O I
10.1021/acs.jpcc.6b08086
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interaction of fluorophores with nearby metallic structures is now an active area of research. Dielectric photonic structures offer some advantages over plasmonic structures, namely, small energy losses and less quenching. We describe a dielectric one-dimensional photonic crystal (1DPC), which supports Bloch surface waves (BSWs) from 280 to 440 nm. This BSW structure is a quartz slide coated with alternating layers of SiO2 and Si3N4. We show that this structure displays BSWs and that the near-UV fluorophore, 2-aminopurine (2-AP), on the top surface of the structure couples with the BSWs. Fluorophores do not have to be inside the structure for coupling and show a narrow angular distribution, with an angular separation of wavelengths. The Bloch wave-coupled emission (BWCE) radiates through the dielectric layer. These BSW structures, with useful wavelength range for detection of intrinsic protein and cofactor fluorescence, provide opportunities for novel optical configurations for bioassays with surface-localized biomolecules and for optical imaging using the coupled emission.
引用
收藏
页码:28727 / 28734
页数:8
相关论文
共 52 条
[1]   Counting Molecules with a Mobile Phone Camera Using Plasmonic Enhancement [J].
Ayas, Sencer ;
Cupallari, Andi ;
Ekiz, Okan Oner ;
Kaya, Yasin ;
Dana, Aykutlu .
ACS PHOTONICS, 2014, 1 (01) :17-26
[2]   Radiative decay engineering 6: Fluorescence on one-dimensional photonic crystals [J].
Badugu, Ramachandram ;
Nowaczyk, Kazimierz ;
Descrovi, Emiliano ;
Lakowicz, Joseph R. .
ANALYTICAL BIOCHEMISTRY, 2013, 442 (01) :83-96
[3]   Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal [J].
Ballarini, Mirko ;
Frascella, Francesca ;
Michelotti, Francesco ;
Digregorio, Gabriella ;
Rivolo, Paola ;
Paeder, Vincent ;
Musi, Valeria ;
Giorgis, Fabrizio ;
Descrovi, Emiliano .
APPLIED PHYSICS LETTERS, 2011, 99 (04)
[4]   A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces [J].
Block, Ian D. ;
Mathias, Patrick C. ;
Ganesh, Nikhil ;
Jones, Sarah I. ;
Dorvel, Brian R. ;
Chaudhery, Vikram ;
Vodkin, Lila O. ;
Bashir, Rashid ;
Cunningham, Brian T. .
OPTICS EXPRESS, 2009, 17 (15) :13222-13235
[5]   Surface plasmon-coupled emission and Fabry-Perot resonance in the sample layer: A theoretical approach [J].
Calander, N .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (29) :13957-13963
[6]   Measurement of Fluorescence in a Rhodamine-123 Doped Self-Assembled "Giant" Mesostructured Silica Sphere Using a Smartphone as Optical Hardware [J].
Canning, John ;
Lau, Angelica ;
Naqshbandi, Masood ;
Petermann, Ingemar ;
Crossley, Maxwell J. .
SENSORS, 2011, 11 (07) :7055-7062
[7]   Line-scanning detection instrument for photonic crystal enhanced fluorescence [J].
Chaudhery, Vikram ;
Lu, Meng ;
Huang, Cheng-Sheng ;
Polans, James ;
Tan, Ruimin ;
Zangar, Richard C. ;
Cunningham, Brian T. .
OPTICS LETTERS, 2012, 37 (13) :2565-2567
[8]   Directing Fluorescence with Plasmonic and Photonic Structures [J].
Choudhury, Sharmistha Dutta ;
Badugu, Ramachandram ;
Lakowicz, Joseph R. .
ACCOUNTS OF CHEMICAL RESEARCH, 2015, 48 (08) :2171-2180
[9]   Aluminum Nanoparticles as Substrates for Metal-Enhanced Fluorescence in the Ultraviolet for the Label-Free Detection of Biomolecules [J].
Chowdhury, Mustafa H. ;
Ray, Krishanu ;
Gray, Stephen K. ;
Pond, James ;
Lakowicz, Joseph R. .
ANALYTICAL CHEMISTRY, 2009, 81 (04) :1397-1403
[10]   Nanoparticles and nanocomposites for fluorescence sensing and imaging [J].
Demchenko, Alexander P. .
METHODS AND APPLICATIONS IN FLUORESCENCE, 2013, 1 (02)