Effect of the Electric Double Layer on the Activation Energy of Ion Transport in Conical Nanopores

被引:42
|
作者
Perera, Rukshan T. [1 ]
Johnson, Robert P. [1 ]
Edwards, Martin A. [1 ]
White, Henry S. [1 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2015年 / 119卷 / 43期
关键词
CURRENT RECTIFICATION; ELECTROKINETIC TRANSPORT; QUARTZ NANOPIPETTES; NANOFLUIDIC DIODES; SURFACE-CHARGE; NANOCHANNELS; GLASS; MEMBRANES; CONDUCTANCE; ENRICHMENT;
D O I
10.1021/acs.jpcc.5b08194
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Measured apparent activation energies, E-A, of ion transport (K+ and Cl-) in conical glass nanopores are reported as a function of applied voltage (-0.5 to 0.5 V), pore size (20-2000 nm), and electrolyte concentration (0.1-50 mM). E-A values for transport within an electrically charged conical glass nanopore differ from the bulk values due to the voltage and temperature-dependent distribution of the ions within the double layer. Remarkably, nanopores that display ion current rectification also display a large decrease in E-A under accumulation mode conditions (at applied negative voltages versus an external ground) and a large increase in E-A under depletion mode conditions (at positive voltages). Finite element simulations based on the Poisson-Nernst-Planck model semiquantitatively predict the measured temperaturedependent conductivity and dependence of E-A on applied voltage. The results highlight the relationships between the distribution of ions with the nanopore, ionic current, and E-A and their dependencies on pore size, temperature, ion concentration, and applied voltage.
引用
收藏
页码:24299 / 24306
页数:8
相关论文
共 50 条
  • [21] Rectified Ion Transport in Ultra-thin Membrane Governed by Outer Membrane Electric Double Layer
    Zhang, Zhenkun
    Wang, Chao
    Lin, Lingxin
    Xu, Mengyi
    Wu, Yichun
    Cao, Liuxuan
    CHINESE JOURNAL OF CHEMISTRY, 2020, 38 (12) : 1757 - 1761
  • [22] Quantification of Steady-State Ion Transport through Single Conical Nanopores and a Nonuniform Distribution of Surface Charges
    Liu, Juan
    Wang, Dengchao
    Kvetny, Maksim
    Brown, Warren
    Li, Yan
    Wang, Gangli
    LANGMUIR, 2013, 29 (27) : 8743 - 8752
  • [23] Vibrational Energy Harvester with Electric Double Layer Electrets
    Ono, Shimpei
    Miwa, Kazumoto
    Shimizu, Sunao
    Watanabe, Yuichiro
    Wei, Alexander
    2020 SYMPOSIUM ON DESIGN, TEST, INTEGRATION & PACKAGING OF MEMS AND MOEMS (DTIP), 2020,
  • [24] Role of ion hydration for the differential capacitance of an electric double layer
    Caetano, Daniel L. Z.
    Bossa, Guilherme V.
    de Oliveira, Vinicius M.
    Brown, Matthew A.
    de Carvalho, Sidney J.
    May, Sylvio
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (40) : 27796 - 27807
  • [25] Ion sorption on nano-structured materials: Effect of electric double layer overlap.
    Wang, Y
    Bryan, C
    Xu, HF
    Brinker, CJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U602 - U602
  • [26] Effect of ion charges on the electric double layer capacitance of activated carbon in aqueous electrolyte systems
    Icaza, Juan C.
    Guduru, Ramesh K.
    JOURNAL OF POWER SOURCES, 2016, 336 : 360 - 366
  • [27] On Influence Acoustic Radiation on Electric Double Layer in Ion Medium
    Shaidurov, G. Y.
    Romanova, G. N.
    Yarygina, O. L.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2012, 5 (01): : 132 - 139
  • [28] On the effect of image charges and ion-wall dispersion forces on electric double layer interactions
    Wernersson, Erik
    Kjellander, Roland
    JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (15):
  • [29] Effects of Weak Electrolytes on Electric Double Layer Ion Distributions
    Chamberlayne, Christian F.
    Zare, Richard N.
    Santiago, Juan G.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (19): : 8302 - 8306
  • [30] Effect of Ion Dispersion Forces on the Electric Double Layer of Colloids: A Monte Carlo Simulation Study
    Martin-Molina, Alberto
    Ibarra-Armenta, Jose G.
    Quesada-Perez, Manuel
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (08): : 2414 - 2421