Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces

被引:114
作者
Afanasenkau, Dzmitry [1 ]
Kalinina, Daria [2 ]
Lyakhovetskii, Vsevolod [3 ,4 ]
Tondera, Christoph [1 ]
Gorsky, Oleg [2 ,3 ,4 ]
Moosavi, Seyyed [1 ]
Pavlova, Natalia [2 ,3 ]
Merkulyeva, Natalia [2 ,3 ,4 ]
Kalueff, Allan V. [2 ,5 ]
Minev, Ivan R. [1 ,6 ]
Musienko, Pavel [2 ,3 ,4 ,7 ]
机构
[1] Tech Univ Dresden, Ctr Mol & Cellular Bioengn CMCB, Biotechnol Ctr BIOTEC, Dresden, Germany
[2] St Petersburg State Univ, Inst Translat Biomed, St Petersburg, Russia
[3] Russian Acad Sci, Pavlov Inst Physiol, St Petersburg, Russia
[4] Minist Healthcare Russian Federat, Granov Russian Res Ctr Radiol & Surg Technol, St Petersburg, Russia
[5] Ural Fed Univ, Ekaterinburg, Russia
[6] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[7] Minist Healthcare Russian Federat, St Petersburg State Res Inst Phthisiopulmonol, St Petersburg, Russia
基金
欧洲研究理事会; 俄罗斯基础研究基金会;
关键词
SPINAL-CORD; DURA-MATER; STIMULATION; DECEREBRATE; LOCOMOTION; MICROGLIA; BALANCE; BLADDER; SYSTEM; GAIT;
D O I
10.1038/s41551-020-00615-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Customized soft electrode arrays that are well adjusted to specific anatomical environments, functions and experimental models can be rapidly prototyped via the robotically controlled deposition of conductive inks and insulating inks. Neuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability. This technology might enable personalized bioelectronics for neuroprosthetic applications.
引用
收藏
页码:1010 / 1022
页数:13
相关论文
共 69 条
[1]   Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration [J].
Ajiboye, A. Bolu ;
Willett, Francis R. ;
Young, Daniel R. ;
Memberg, William D. ;
Murphy, Brian A. ;
Miller, Jonathan P. ;
Walter, Benjamin L. ;
Sweet, Jennifer A. ;
Hoyen, Harry A. ;
Keith, Michael W. ;
Peckham, P. Hunter ;
Simeral, John D. ;
Donoghue, John P. ;
Hochberg, Leigh R. ;
Kirsch, Robert F. .
LANCET, 2017, 389 (10081) :1821-1830
[2]   Printed elastic membranes for multimodal pacing and recording of human stem-cell-derived cardiomyocytes [J].
Athanasiadis, Markos ;
Afanasenkau, Dzmitry ;
Derks, Wouter ;
Tondera, Christoph ;
Murganti, Francesca ;
Busskamp, Volker ;
Bergmann, Olaf ;
Minev, Ivan R. .
NPJ FLEXIBLE ELECTRONICS, 2020, 4 (01)
[3]   Direct Writing of Elastic Fibers with Optical, Electrical, and Microfluidic Functionality [J].
Athanasiadis, Markos ;
Pak, Anna ;
Afanasenkau, Dzmitry ;
Minev, Ivan R. .
ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (07)
[4]   All-inkjet-printed gold microelectrode arrays for extracellular recording of action potentials [J].
Bachmann B. ;
Adly N.Y. ;
Schnitker J. ;
Yakushenko A. ;
Rinklin P. ;
Offenhäusser A. ;
Wolfrum B. .
Flexible and Printed Electronics, 2017, 2 (03)
[5]   AN ELECTROCHEMICAL AND ELECTRON MICROSCOPIC STUDY OF ACTIVATION AND ROUGHENING OF PLATINUM ELECTRODES [J].
BIEGLER, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1969, 116 (08) :1131-&
[6]   Corticospinal neuroprostheses to restore locomotion after spinal cord injury [J].
Borton, David ;
Bonizzato, Marco ;
Beauparlant, Janine ;
DiGiovanna, Jack ;
Moraud, Eduardo M. ;
Wenger, Nikolaus ;
Musienko, Pavel ;
Minev, Ivan R. ;
Lacour, Stephanie P. ;
Millan, Jose del R. ;
Micera, Silvestro ;
Courtine, Gregoire .
NEUROSCIENCE RESEARCH, 2014, 78 :21-29
[7]   A stretchable and biodegradable strain and pressure sensor for orthopaedic application [J].
Boutry, Clementine M. ;
Kaizawa, Yukitoshi ;
Schroeder, Bob C. ;
Chortos, Alex ;
Legrand, Anais ;
Wang, Zhen ;
Chang, James ;
Fox, Paige ;
Bao, Zhenan .
NATURE ELECTRONICS, 2018, 1 (05) :314-321
[8]   Passive nonlinear elastic behaviour of skeletal muscle: Experimental results and model formulation [J].
Calvo, B. ;
Ramirez, A. ;
Alonso, A. ;
Grasa, J. ;
Soteras, F. ;
Osta, R. ;
Munoz, M. J. .
JOURNAL OF BIOMECHANICS, 2010, 43 (02) :318-325
[9]   Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics [J].
Capogrosso, Marco ;
Wagner, Fabien B. ;
Gandar, Jerome ;
Moraud, Eduardo Martin ;
Wenger, Nikolaus ;
Milekovic, Tomislav ;
Shkorbatova, Polina ;
Pavlova, Natalia ;
Musienko, Pavel ;
Bezard, Erwan ;
Bloch, Jocelyne ;
Courtine, Gregoire .
NATURE PROTOCOLS, 2018, 13 (09) :2031-2061
[10]   A brain-spine interface alleviating gait deficits after spinal cord injury in primates [J].
Capogrosso, Marco ;
Milekovic, Tomislav ;
Borton, David ;
Wagner, Fabien ;
Moraud, Eduardo Martin ;
Mignardot, Jean-Baptiste ;
Buse, Nicolas ;
Gandar, Jerome ;
Barraud, Quentin ;
Xing, David ;
Rey, Elodie ;
Duis, Simone ;
Yang Jianzhong ;
Ko, Wai Kin D. ;
Li, Qin ;
Detemple, Peter ;
Denison, Tim ;
Micera, Silvestro ;
Bezard, Erwan ;
Bloch, Jocelyne ;
Courtine, Gregoire .
NATURE, 2016, 539 (7628) :284-+