Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces

被引:100
作者
Afanasenkau, Dzmitry [1 ]
Kalinina, Daria [2 ]
Lyakhovetskii, Vsevolod [3 ,4 ]
Tondera, Christoph [1 ]
Gorsky, Oleg [2 ,3 ,4 ]
Moosavi, Seyyed [1 ]
Pavlova, Natalia [2 ,3 ]
Merkulyeva, Natalia [2 ,3 ,4 ]
Kalueff, Allan V. [2 ,5 ]
Minev, Ivan R. [1 ,6 ]
Musienko, Pavel [2 ,3 ,4 ,7 ]
机构
[1] Tech Univ Dresden, Ctr Mol & Cellular Bioengn CMCB, Biotechnol Ctr BIOTEC, Dresden, Germany
[2] St Petersburg State Univ, Inst Translat Biomed, St Petersburg, Russia
[3] Russian Acad Sci, Pavlov Inst Physiol, St Petersburg, Russia
[4] Minist Healthcare Russian Federat, Granov Russian Res Ctr Radiol & Surg Technol, St Petersburg, Russia
[5] Ural Fed Univ, Ekaterinburg, Russia
[6] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[7] Minist Healthcare Russian Federat, St Petersburg State Res Inst Phthisiopulmonol, St Petersburg, Russia
基金
欧洲研究理事会; 俄罗斯基础研究基金会;
关键词
SPINAL-CORD; DURA-MATER; STIMULATION; DECEREBRATE; LOCOMOTION; MICROGLIA; BALANCE; BLADDER; SYSTEM; GAIT;
D O I
10.1038/s41551-020-00615-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Customized soft electrode arrays that are well adjusted to specific anatomical environments, functions and experimental models can be rapidly prototyped via the robotically controlled deposition of conductive inks and insulating inks. Neuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability. This technology might enable personalized bioelectronics for neuroprosthetic applications.
引用
收藏
页码:1010 / 1022
页数:13
相关论文
共 69 条
  • [1] Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration
    Ajiboye, A. Bolu
    Willett, Francis R.
    Young, Daniel R.
    Memberg, William D.
    Murphy, Brian A.
    Miller, Jonathan P.
    Walter, Benjamin L.
    Sweet, Jennifer A.
    Hoyen, Harry A.
    Keith, Michael W.
    Peckham, P. Hunter
    Simeral, John D.
    Donoghue, John P.
    Hochberg, Leigh R.
    Kirsch, Robert F.
    [J]. LANCET, 2017, 389 (10081) : 1821 - 1830
  • [2] Printed elastic membranes for multimodal pacing and recording of human stem-cell-derived cardiomyocytes
    Athanasiadis, Markos
    Afanasenkau, Dzmitry
    Derks, Wouter
    Tondera, Christoph
    Murganti, Francesca
    Busskamp, Volker
    Bergmann, Olaf
    Minev, Ivan R.
    [J]. NPJ FLEXIBLE ELECTRONICS, 2020, 4 (01)
  • [3] Direct Writing of Elastic Fibers with Optical, Electrical, and Microfluidic Functionality
    Athanasiadis, Markos
    Pak, Anna
    Afanasenkau, Dzmitry
    Minev, Ivan R.
    [J]. ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (07):
  • [4] All-inkjet-printed gold microelectrode arrays for extracellular recording of action potentials
    Bachmann B.
    Adly N.Y.
    Schnitker J.
    Yakushenko A.
    Rinklin P.
    Offenhäusser A.
    Wolfrum B.
    [J]. Flexible and Printed Electronics, 2017, 2 (03):
  • [5] AN ELECTROCHEMICAL AND ELECTRON MICROSCOPIC STUDY OF ACTIVATION AND ROUGHENING OF PLATINUM ELECTRODES
    BIEGLER, T
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1969, 116 (08) : 1131 - &
  • [6] Corticospinal neuroprostheses to restore locomotion after spinal cord injury
    Borton, David
    Bonizzato, Marco
    Beauparlant, Janine
    DiGiovanna, Jack
    Moraud, Eduardo M.
    Wenger, Nikolaus
    Musienko, Pavel
    Minev, Ivan R.
    Lacour, Stephanie P.
    Millan, Jose del R.
    Micera, Silvestro
    Courtine, Gregoire
    [J]. NEUROSCIENCE RESEARCH, 2014, 78 : 21 - 29
  • [7] A stretchable and biodegradable strain and pressure sensor for orthopaedic application
    Boutry, Clementine M.
    Kaizawa, Yukitoshi
    Schroeder, Bob C.
    Chortos, Alex
    Legrand, Anais
    Wang, Zhen
    Chang, James
    Fox, Paige
    Bao, Zhenan
    [J]. NATURE ELECTRONICS, 2018, 1 (05): : 314 - 321
  • [8] Passive nonlinear elastic behaviour of skeletal muscle: Experimental results and model formulation
    Calvo, B.
    Ramirez, A.
    Alonso, A.
    Grasa, J.
    Soteras, F.
    Osta, R.
    Munoz, M. J.
    [J]. JOURNAL OF BIOMECHANICS, 2010, 43 (02) : 318 - 325
  • [9] Configuration of electrical spinal cord stimulation through real-time processing of gait kinematics
    Capogrosso, Marco
    Wagner, Fabien B.
    Gandar, Jerome
    Moraud, Eduardo Martin
    Wenger, Nikolaus
    Milekovic, Tomislav
    Shkorbatova, Polina
    Pavlova, Natalia
    Musienko, Pavel
    Bezard, Erwan
    Bloch, Jocelyne
    Courtine, Gregoire
    [J]. NATURE PROTOCOLS, 2018, 13 (09) : 2031 - 2061
  • [10] A brain-spine interface alleviating gait deficits after spinal cord injury in primates
    Capogrosso, Marco
    Milekovic, Tomislav
    Borton, David
    Wagner, Fabien
    Moraud, Eduardo Martin
    Mignardot, Jean-Baptiste
    Buse, Nicolas
    Gandar, Jerome
    Barraud, Quentin
    Xing, David
    Rey, Elodie
    Duis, Simone
    Yang Jianzhong
    Ko, Wai Kin D.
    Li, Qin
    Detemple, Peter
    Denison, Tim
    Micera, Silvestro
    Bezard, Erwan
    Bloch, Jocelyne
    Courtine, Gregoire
    [J]. NATURE, 2016, 539 (7628) : 284 - +