An efficient semi-supervised graph based clustering

被引:7
|
作者
Viet-Vu Vu [1 ]
机构
[1] Vietnam Natl Univ, Informat Technol Inst, 144 Xuan Thuy St, Hanoi, Vietnam
关键词
Semi-supervised clustering; seed; k-nearest neighbors graph; ALGORITHM; SELECTION; NEIGHBORS;
D O I
10.3233/IDA-163296
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is one of the most important tools in data mining and knowledge discovery from data. In recent years, semi-supervised clustering, that integrates side information (seeds or constraints) in the clustering process, has been known as a good strategy to boost clustering results. In this article, a new semi-supervised graph based clustering (SSGC) is presented. Using a graph of the k-nearest neighbors and a measure of local density for the similarity between vertex, SSGC integrates the seeds in the process of building clusters and hence can improve the quality of clustering. More over, SSGC can deal with noise, differential density of data, and uses only one parameter (i.e. the number of nearest neighbors). Experiments conducted on real data sets from UCI show that our method can produce good clustering results compared with the related techniques such as semi-supervised density based clustering (SSDBSCAN). Moreover, the computational cost of SSGC is much less than that of SSDBSCAN.
引用
收藏
页码:297 / 307
页数:11
相关论文
共 50 条
  • [31] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [32] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [33] Density-based semi-supervised clustering
    Ruiz, Carlos
    Spiliopoulou, Myra
    Menasalvas, Ernestina
    DATA MINING AND KNOWLEDGE DISCOVERY, 2010, 21 (03) : 345 - 370
  • [34] Graph-Based Semi-Supervised Deep Image Clustering With Adaptive Adjacency Matrix
    Ding, Shifei
    Hou, Haiwei
    Xu, Xiao
    Zhang, Jian
    Guo, Lili
    Ding, Ling
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) : 18828 - 18837
  • [35] Graph Based Semi-Supervised Non-negative Matrix Factorization for Document Clustering
    Guan, Naiyang
    Huang, Xuhui
    Lan, Long
    Luo, Zhigang
    Zhang, Xiang
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 404 - 408
  • [36] Semi-supervised clustering methods
    Bair, Eric
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05): : 349 - 361
  • [37] SEMI-SUPERVISED SPECTRAL CLUSTERING
    Mai, Xiaoyi
    Couillet, Romain
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 2012 - 2016
  • [38] A review on semi-supervised clustering
    Cai, Jianghui
    Hao, Jing
    Yang, Haifeng
    Zhao, Xujun
    Yang, Yuqing
    INFORMATION SCIENCES, 2023, 632 : 164 - 200
  • [39] Label Efficient Semi-Supervised Learning via Graph Filtering
    Li, Qimai
    Wu, Xiao-Ming
    Liu, Han
    Zhang, Xiaotong
    Guan, Zhichao
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9574 - 9583
  • [40] Experimental Study of Semi-Supervised Graph 2-Clustering Problem
    Morshinin A.V.
    Journal of Mathematical Sciences, 2023, 275 (1) : 107 - 115