Explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping

被引:9
作者
Wang, Yu [1 ]
Yao, Qingxu [1 ]
Zhang, Quanhu [1 ]
Zhang, He [1 ]
Lu, Yunfeng [1 ]
Fan, Qimeng [1 ]
Jiang, Nan [1 ]
Yu, Wangtao [1 ]
机构
[1] Xian Res Inst Hitech, Xian 710025, Peoples R China
关键词
Radionuclide identification; Gamma -ray spectrum; Convolutional neural network; Class activation mapping; GAMMA-RAY SPECTRA;
D O I
10.1016/j.net.2022.08.011
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Radionuclide identification is an important part of the nuclear material identification system. The development of artificial intelligence and machine learning has made nuclide identification rapid and automatic. However, many methods directly use existing deep learning models to analyze the gammaray spectrum, which lacks interpretability for researchers. This study proposes an explainable radionuclide identification algorithm based on the convolutional neural network and class activation mapping. This method shows the area of interest of the neural network on the gamma-ray spectrum by generating a class activation map. We analyzed the class activation map of the gamma-ray spectrum of different types, different gross counts, and different signal-to-noise ratios. The results show that the convolutional neural network attempted to learn the relationship between the input gamma-ray spectrum and the nuclide type, and could identify the nuclide based on the photoelectric peak and Compton edge. Furthermore, the results explain why the neural network could identify gamma-ray spectra with low counts and low signal-to-noise ratios. Thus, the findings improve researchers' confidence in the ability of neural networks to identify nuclides and promote the application of artificial intelligence methods in the field of nuclide identification.(c) 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:4684 / 4692
页数:9
相关论文
共 30 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[3]   Use of artificial neural networks in measuring characteristics of shielded plutonium for arms control [J].
Aitkenhead, Matt J. ;
Owen, Mark ;
Chambers, David M. .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2012, 27 (03) :432-439
[4]   Machine Learning Interpretability: A Survey on Methods and Metrics [J].
Carvalho, Diogo, V ;
Pereira, Eduardo M. ;
Cardoso, Jaime S. .
ELECTRONICS, 2019, 8 (08)
[5]   Automatic and Real-Time Identification of Radionuclides in Gamma-Ray Spectra: A New Method Based on Convolutional Neural Network Trained With Synthetic Data Set [J].
Daniel, G. ;
Ceraudo, F. ;
Limousin, O. ;
Maier, D. ;
Meuris, A. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (04) :644-653
[6]   A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra [J].
Galib, S. M. ;
Bhowmik, P. K. ;
Avachat, A. V. ;
Lee, H. K. .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2021, 53 (12) :4072-4079
[7]   Isotope identification using deep learning: An explanation [J].
Gomez-Fernandez, Mario ;
Wong, Weng-Keen ;
Tokuhiro, Akira ;
Welter, Kent ;
Alhawsawi, Abdulsalam M. ;
Yang, Haori ;
Higley, Kathryn .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 988
[8]   Status of research and development of learning-based approaches in nuclear science and engineering: A review [J].
Gomez-Fernandez, Mario ;
Higley, Kathryn ;
Tokuhiro, Akira ;
Welter, Kent ;
Wong, Weng-Keen ;
Yang, Haori .
NUCLEAR ENGINEERING AND DESIGN, 2020, 359
[9]  
IAEA, 2006, TECHN FUNCT SPEC BOR
[10]   A comparison of machine learning methods for automated gamma-ray spectroscopy [J].
Kamuda, Mark ;
Zhao, Jifu ;
Huff, Kathryn .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 954