Fourier spectral method for the modified Swift-Hohenberg equation

被引:4
|
作者
Zhao, Xiaopeng [1 ]
Liu, Bo [1 ]
Zhang, Peng [2 ]
Zhang, Wenyu [1 ]
Liu, Fengnan [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2013年
关键词
CAHN-HILLIARD EQUATION; INSTABILITY;
D O I
10.1186/1687-1847-2013-156
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Fourier spectral method for numerically solving the modified Swift-Hohenberg equation. The semi-discrete and fully discrete schemes are established. Moreover, the existence, uniqueness and the optimal error bound are also considered.
引用
收藏
页数:19
相关论文
共 37 条
  • [1] Optimal controls of multidimensional modified Swift-Hohenberg equation
    Zheng, Jiashan
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (10) : 2117 - 2125
  • [2] BIFURCATION AND FINAL PATTERNS OF A MODIFIED SWIFT-HOHENBERG EQUATION
    Choi, Yuncherl
    Ha, Taeyoung
    Han, Jongmin
    Lee, Doo Seok
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (07): : 2543 - 2567
  • [3] On a Large Time-Stepping Method for the Swift-Hohenberg Equation
    Zhang, Zhengru
    Ma, Yuanzi
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (06) : 992 - 1003
  • [4] Homoclinic snaking in the discrete Swift-Hohenberg equation
    Kusdiantara, R.
    Susanto, H.
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [5] Continuation and Bifurcation of Grain Boundaries in the Swift-Hohenberg Equation
    Lloyd, David J. B.
    Scheel, Arnd
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (01): : 252 - 293
  • [6] Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity
    Thiele, Uwe
    Archer, Andrew J.
    Robbins, Mark J.
    Gomez, Hector
    Knobloch, Edgar
    PHYSICAL REVIEW E, 2013, 87 (04):
  • [7] PERIODIC SOLUTIONS AND HOMOCLINIC SOLUTIONS FOR A SWIFT-HOHENBERG EQUATION WITH DISPERSION
    Deng, Shengfu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06): : 1647 - 1662
  • [8] On periodically modulated rolls in the generalized Swift-Hohenberg equation: Galerkin' approximations
    Kulagin, N. E.
    Lerman, L. M.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 454
  • [9] Modulating traveling fronts for the Swift-Hohenberg equation in the case of anadditional conservation law
    Hilder, Bastian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (05) : 4353 - 4380
  • [10] Invasion Fronts Outside the Homoclinic Snaking Region in the Planar Swift-Hohenberg Equation
    Lloyd, David J. B.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04) : 1892 - 1933