Comparative Proteomic Analysis of Aluminum Tolerance in Tibetan Wild and Cultivated Barleys

被引:26
|
作者
Dai, Huaxin [1 ]
Cao, Fangbin [1 ]
Chen, Xianhong [1 ]
Zhang, Mian [1 ]
Ahmed, Imrul Mosaddek [1 ]
Chen, Zhong-Hua [2 ]
Li, Chengdao [3 ]
Zhang, Guoping [1 ]
Wu, Feibo [1 ]
机构
[1] Zhejiang Univ, Dept Agron, Coll Agr & Biotechnol, Hangzhou 310003, Zhejiang, Peoples R China
[2] Univ Western Sydney, Sch Sci & Hlth, Penrith, NSW 1797, Australia
[3] Govt Western Australia, Dept Agr, S Perth, WA, Australia
来源
PLOS ONE | 2013年 / 8卷 / 05期
基金
中国国家自然科学基金;
关键词
ADENOSYLMETHIONINE SYNTHETASE GENE; CITRATE SECRETION; OXIDATIVE STRESS; EXPRESSION; RESISTANCE; ARABIDOPSIS; PLANTS; ACID; BIOSYNTHESIS; ACCUMULATION;
D O I
10.1371/journal.pone.0063428
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aluminum (Al) toxicity is a major limiting factor for plant production in acid soils. Wild barley germplasm is rich in genetic diversity and may provide elite genes for crop Al tolerance improvement. The hydroponic-experiments were performed to compare proteomic and transcriptional characteristics of two contrasting Tibetan wild barley genotypes Al-resistant/tolerant XZ16 and Al-sensitive XZ61 as well as Al-resistant cv. Dayton. Results showed that XZ16 had less Al uptake and translocation than XZ61 and Dayton under Al stress. Thirty-five Al-tolerance/resistance-associated proteins were identified and categorized mainly in metabolism, energy, cell growth/division, protein biosynthesis, protein destination/storage, transporter, signal transduction, disease/defense, etc. Among them, 30 were mapped on barley genome, with 16 proteins being exclusively up-regulated by Al stress in XZ16, including 4 proteins (S-adenosylmethionine-synthase 3, ATP synthase beta subunit, triosephosphate isomerase, Bp2A) specifically expressed in XZ16 but not Dayton. The findings highlighted the significance of specific-proteins associated with Al tolerance, and verified Tibetan wild barley as a novel genetic resource for Al tolerance.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys
    Dai, Huaxin
    Zhao, Jing
    Ahmed, Imrul Mosaddek
    Cao, Fangbin
    Chen, Zhong-Hua
    Zhang, Guoping
    Li, Chengdao
    Wu, Feibo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2014, 75 : 36 - 44
  • [2] Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype
    Wang, Nanbo
    Zhao, Jing
    He, Xiaoyan
    Sun, Hongyan
    Zhang, Guoping
    Wu, Feibo
    BMC GENOMICS, 2015, 16
  • [3] Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype
    Nanbo Wang
    Jing Zhao
    Xiaoyan He
    Hongyan Sun
    Guoping Zhang
    Feibo Wu
    BMC Genomics, 16
  • [4] Comparative Analysis of Transcriptome Profiles Reveals the Mechanisms in the Difference of Low Potassium Tolerance among Cultivated and Tibetan Wild Barleys
    Ye, Zhilan
    He, Xinyi
    Liu, Chaorui
    AGRONOMY-BASEL, 2022, 12 (05):
  • [5] Genome-Wide Association Analysis of Aluminum Tolerance in Cultivated and Tibetan Wild Barley
    Cai, Shengguan
    Wu, Dezhi
    Jabeen, Zahra
    Huang, Yuqing
    Huang, Yechang
    Zhang, Guoping
    PLOS ONE, 2013, 8 (07):
  • [6] Difference in physiological and biochemical responses to salt stress between Tibetan wild and cultivated barleys
    Jabeen, Zahra
    Hussain, Nazim
    Wu, Dezhi
    Han, Yong
    Shamsi, Imran
    Wu, Feibo
    Zhang, Guoping
    ACTA PHYSIOLOGIAE PLANTARUM, 2015, 37 (09)
  • [7] Genetic analysis of aluminum tolerance in Brazilian barleys
    Minella, E
    Sorrells, ME
    PESQUISA AGROPECUARIA BRASILEIRA, 2002, 37 (08) : 1099 - 1103
  • [8] Difference in physiological and biochemical responses to salt stress between Tibetan wild and cultivated barleys
    Zahra Jabeen
    Nazim Hussain
    Dezhi Wu
    Yong Han
    Imran Shamsi
    Feibo Wu
    Guoping Zhang
    Acta Physiologiae Plantarum, 2015, 37
  • [9] Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley
    Imrul Mosaddek Ahmed
    Umme Aktari Nadira
    Fangbin Cao
    Xiaoyan He
    Guoping Zhang
    Feibo Wu
    Planta, 2016, 243 : 973 - 985
  • [10] Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley
    Ahmed, Imrul Mosaddek
    Nadira, Umme Aktari
    Cao, Fangbin
    He, Xiaoyan
    Zhang, Guoping
    Wu, Feibo
    PLANTA, 2016, 243 (04) : 973 - 985