On a simple two-stage closed-form estimator for a stochastic volatility in a general linear regression

被引:4
作者
Dufour, JM [1 ]
Valéry, P
机构
[1] Univ Montreal, Montreal, PQ, Canada
[2] HEC, Montreal, PQ, Canada
来源
ECONOMETRIC ANALYSIS OF FINANCIAL AND ECONOMIC TIME SERIES | 2006年 / 20卷
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0731-9053(05)20010-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we consider the estimation of volatility parameters in the context of a linear regression where the disturbances follow a stochastic volatility (SV) model of order one with Gaussian log-volatility. The linear regression represents the conditional mean of the process and may have a fairly general form, including for example finite-order autoregressions. We provide a computationally simple two-step estimator available in closed form. Under general regularity conditions, we show that this two-step estimator is asymptotically normal. We study its statistical properties by simulation, compare it with alternative generalized method-of-moments (GMM) estimators, and present an application to the S&P composite index.
引用
收藏
页码:259 / 288
页数:30
相关论文
共 38 条
[21]   LARGE SAMPLE PROPERTIES OF GENERALIZED-METHOD OF MOMENTS ESTIMATORS [J].
HANSEN, LP .
ECONOMETRICA, 1982, 50 (04) :1029-1054
[22]   MULTIVARIATE STOCHASTIC VARIANCE MODELS [J].
HARVEY, A ;
RUIZ, E ;
SHEPHARD, N .
REVIEW OF ECONOMIC STUDIES, 1994, 61 (02) :247-264
[23]   BAYESIAN-ANALYSIS OF STOCHASTIC VOLATILITY MODELS [J].
JACQUIER, E ;
POLSON, NG ;
ROSSI, PE .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1994, 12 (04) :371-389
[24]   Stochastic volatility: Likelihood inference and comparison with ARCH models [J].
Kim, S ;
Shephard, N ;
Chib, S .
REVIEW OF ECONOMIC STUDIES, 1998, 65 (03) :361-393
[25]   Optimal instrumental variables estimation for ARMA models [J].
Kuersteiner, GM .
JOURNAL OF ECONOMETRICS, 2001, 104 (02) :359-405
[26]  
Mahieu RJ, 1998, J APPL ECONOM, V13, P333, DOI 10.1002/(SICI)1099-1255(199807/08)13:4<333::AID-JAE479>3.0.CO
[27]  
2-I
[28]   PRICING FOREIGN-CURRENCY OPTIONS WITH STOCHASTIC VOLATILITY [J].
MELINO, A ;
TURNBULL, SM .
JOURNAL OF ECONOMETRICS, 1990, 45 (1-2) :239-265
[29]  
NELSON DB, 1988, THESIS MIT CAMBRIDGE
[30]   A SIMPLE, POSITIVE SEMIDEFINITE, HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX [J].
NEWEY, WK ;
WEST, KD .
ECONOMETRICA, 1987, 55 (03) :703-708