General Hypernetwork Framework for Creating 3D Point Clouds

被引:4
|
作者
Spurek, Przemyslaw [1 ]
Zieba, Maciej [2 ,3 ]
Tabor, Jacek [1 ]
Trzcinski, Tomasz [1 ,3 ,4 ]
机构
[1] Jagiellonian Univ, PL-31007 Krakow, Poland
[2] Wroclaw Univ Sci & Technol, PL-50370 Wroclaw, Poland
[3] Tooploox, PL-53601 Wroclaw, Poland
[4] Warsaw Univ Technol, PL-00661 Warsaw, Poland
关键词
Three-dimensional displays; Solid modeling; Shape; Training; Probability distribution; Numerical models; Transforms; Hypernetworks; 3D point cloud processing; generative modeling;
D O I
10.1109/TPAMI.2021.3131131
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a novel method for generating 3D point clouds that leverages the properties of hypernetworks. Contrary to the existing methods that learn only the representation of a 3D object, our approach simultaneously finds a representation of the object and its 3D surface. The main idea of our HyperCloud method is to build a hypernetwork that returns weights of a particular neural network (target network) trained to map points from prior distribution into a 3D shape. As a consequence, a particular 3D shape can be generated using point-by-point sampling from the prior distribution and transforming the sampled points with the target network. Since the hypernetwork is based on an auto-encoder architecture trained to reconstruct realistic 3D shapes, the target network weights can be considered to be a parametrization of the surface of a 3D shape, and not a standard representation of point cloud usually returned by competitive approaches. We also show that relying on hypernetworks to build 3D point cloud representations offers an elegant and flexible framework. To that point, we further extend our method by incorporating flow-based models, which results in a novel HyperFlow approach.
引用
收藏
页码:9995 / 10008
页数:14
相关论文
共 50 条
  • [1] Transformer for 3D Point Clouds
    Wang, Jiayun
    Chakraborty, Rudrasis
    Yu, Stella X.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4419 - 4431
  • [2] Intrinsic and Isotropic Resampling for 3D Point Clouds
    Lv, Chenlei
    Lin, Weisi
    Zhao, Baoquan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3274 - 3291
  • [3] Structural Relation Modeling of 3D Point Clouds
    Zheng, Yu
    Lu, Jiwen
    Duan, Yueqi
    Zhou, Jie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4867 - 4881
  • [4] Deep Learning for 3D Point Clouds: A Survey
    Guo, Yulan
    Wang, Hanyun
    Hu, Qingyong
    Liu, Hao
    Liu, Li
    Bennamoun, Mohammed
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4338 - 4364
  • [5] A Hybrid Compression Framework for Color Attributes of Static 3D Point Clouds
    Liu, Hao
    Yuan, Hui
    Liu, Qi
    Hou, Junhui
    Zeng, Huanqiang
    Kwong, Sam
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 1564 - 1577
  • [6] A New Framework for Generating Indoor 3D Digital Models from Point Clouds
    Gao, Xiang
    Yang, Ronghao
    Chen, Xuewen
    Tan, Junxiang
    Liu, Yan
    Wang, Zhaohua
    Tan, Jiahao
    Liu, Huan
    REMOTE SENSING, 2024, 16 (18)
  • [7] Unsupervised Domain Adaptation for 3D Point Clouds by Searched Transformations
    Kang, Dongmin
    Nam, Yeongwoo
    Kyung, Daeun
    Choi, Jonghyun
    IEEE ACCESS, 2022, 10 : 56901 - 56913
  • [8] Constructing 3D CSG Models from 3D Raw Point Clouds
    Wu, Q.
    Xu, K.
    Wang, J.
    COMPUTER GRAPHICS FORUM, 2018, 37 (05) : 221 - 232
  • [9] 3D Cascade RCNN: High Quality Object Detection in Point Clouds
    Cai, Qi
    Pan, Yingwei
    Yao, Ting
    Mei, Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5706 - 5719
  • [10] Broad-to-Narrow Registration and Identification of 3D Objects in Partially Scanned and Cluttered Point Clouds
    Arvanitis, Gerasimos
    Zacharaki, Evangelia I.
    Vasa, Libor
    Moustakas, Konstantinos
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2230 - 2245