Identification of Conversion from Normal Elderly Cognition to Alzheimer's Disease using Multimodal Support Vector Machine

被引:16
作者
Zhan, Ye [1 ]
Chen, Kewei [2 ,3 ]
Wu, Xia [1 ,4 ]
Zhang, Daoqiang [5 ]
Zhang, Jiacai [1 ]
Yao, Li [1 ,4 ]
Guo, Xiaojuan [1 ,4 ]
机构
[1] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China
[2] Banner Alzheimers Inst, Phoenix, AZ USA
[3] Banner Good Samaritan PET Ctr, Phoenix, AZ USA
[4] Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer's disease; classification; magnetic resonance imaging; normal elderly; positron emission tomography; support vector machine; AMYLOID DEPOSITION; CSF BIOMARKERS; CLASSIFICATION; IMPAIRMENT; PREDICTION; PATTERNS; VOLUME; PET; TOMOGRAPHY; DECLINE;
D O I
10.3233/JAD-142820
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Alzheimer's disease (AD) is one of the most serious progressive neurodegenerative diseases among the elderly, therefore the identification of conversion to AD at the earlier stage has become a crucial issue. In this study, we applied multimodal support vector machine to identify the conversion from normal elderly cognition to mild cognitive impairment (MCI) or AD based on magnetic resonance imaging and positron emission tomography data. The participants included two independent cohorts (Training set: 121 AD patients and 120 normal controls (NC); Testing set: 20 NC converters and 20 NC non-converters) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The multimodal results showed that the accuracy, sensitivity, and specificity of the classification between NC converters and NC non-converters were 67.5%, 73.33%, and 64%, respectively. Furthermore, the classification results with feature selection increased to 70% accuracy, 75% sensitivity, and 66.67% specificity. The classification results using multimodal data are markedly superior to that using a single modality when we identified the conversion from NC to MCI or AD. The model built in this study of identifying the risk of normal elderly converting to MCI or AD will be helpful in clinical diagnosis and pathological research.
引用
收藏
页码:1057 / 1067
页数:11
相关论文
共 47 条
[1]  
Adeli H, 2005, J ALZHEIMERS DIS, V7, P187
[2]   A fast diffeomorphic image registration algorithm [J].
Ashburner, John .
NEUROIMAGE, 2007, 38 (01) :95-113
[3]  
Bayer TA, 2001, BRAIN PATHOL, V11, P1
[4]   Larger temporal volume in elderly with high versus low beta-amyloid deposition [J].
Chetelat, Gael ;
Villemagne, Victor L. ;
Pike, Kerryn E. ;
Baron, Jean-Claude ;
Bourgeat, Pierrick ;
Jones, Gareth ;
Faux, Noel G. ;
Ellis, Kathryn A. ;
Salvado, Olivier ;
Szoeke, Cassandra ;
Martins, Ralph N. ;
Ames, David ;
Masters, Colin L. ;
Rowe, Christopher C. .
BRAIN, 2010, 133 :3349-3358
[5]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[6]   Predicting the development of mild cognitive impairment: A new use of pattern recognition [J].
Cui, Yue ;
Sachdev, Perminder S. ;
Lipnicki, Darren M. ;
Jin, Jesse S. ;
Luo, Suhuai ;
Zhu, Wanlin ;
Kochan, Nicole A. ;
Reppermund, Simone ;
Liu, Tao ;
Trollor, Julian N. ;
Brodaty, Henry ;
Wen, Wei .
NEUROIMAGE, 2012, 60 (02) :894-901
[7]   Identification of Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Multivariate Predictors [J].
Cui, Yue ;
Liu, Bing ;
Luo, Suhuai ;
Zhen, Xiantong ;
Fan, Ming ;
Liu, Tao ;
Zhu, Wanlin ;
Park, Mira ;
Jiang, Tianzi ;
Jin, Jesse S. .
PLOS ONE, 2011, 6 (07)
[8]   Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database [J].
Cuingnet, Remi ;
Gerardin, Emilie ;
Tessieras, Jerome ;
Auzias, Guillaume ;
Lehericy, Stephane ;
Habert, Marie-Odile ;
Chupin, Marie ;
Benali, Habib ;
Colliot, Olivier .
NEUROIMAGE, 2011, 56 (02) :766-781
[9]   Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging [J].
Davatzikos, Christos ;
Fan, Yong ;
Wu, Xiaoying ;
Shen, Dinggang ;
Resnick, Susan M. .
NEUROBIOLOGY OF AGING, 2008, 29 (04) :514-523
[10]   Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification [J].
Davatzikos, Christos ;
Bhatt, Priyanka ;
Shaw, Leslie M. ;
Batmanghelich, Kayhan N. ;
Trojanowski, John Q. .
NEUROBIOLOGY OF AGING, 2011, 32 (12) :2322.e19-2322.e27