Existence of seven solutions for an asymptotically linear Dirichlet problem without symmetries

被引:14
作者
Castro, Alfonso [1 ]
Cossio, Jorge [2 ]
Velez, Carlos [2 ]
机构
[1] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
[2] Univ Nacl Colombia Medellin, Escuela Matemat, Medellin 3840, Colombia
关键词
Semilinear elliptic equation; Morse index; Sign-changing solutions; Bifurcation; EQUATIONS;
D O I
10.1007/s10231-011-0239-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish sufficient conditions for an asymptotically linear elliptic boundary value problem to have at least seven solutions. We use the mountain pass theorem, Lyapunov-Schmidt reduction arguments, existence of solutions that change sign exactly once, and bifurcation properties. No symmetry is assumed on the domain or the non-linearity.
引用
收藏
页码:607 / 619
页数:13
相关论文
共 14 条
[1]   Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains [J].
Aftalion, A ;
Pacella, F .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) :339-344
[2]  
BARTSCH T, 2003, TOPOL METHOD NONL AN, V22, P1
[3]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053
[4]   MULTIPLE SOLUTIONS FOR A NONLINEAR DIRICHLET PROBLEM [J].
CASTRO, A ;
COSSIO, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (06) :1554-1561
[5]  
Castro A., 1998, ELECT J DIFFERENTIAL, V70, P1
[6]  
Castro A., 1979, Ann. Mat. Pura Appl. (4), V120, P113
[7]   SOLUTIONS OF ASYMPTOTICALLY LINEAR OPERATOR-EQUATIONS VIA MORSE-THEORY [J].
CHANG, KC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (05) :693-712
[8]  
COSSIO J, 2003, REV COLOMB MAT, V37, P25
[9]   Existence of solutions for an asymptotically linear Dirichlet problem via Lazer-Solimini results [J].
Cossio, Jorge ;
Herron, Sigifredo ;
Velez, Carlos .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :66-71
[10]  
Cossio Jorge., 2004, Journal of Dynamics and Differential Equations, V16, P795