Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase

被引:3
作者
GhattyVenkataKrishna, Pavan K. [1 ]
Chavali, Neelima [2 ]
Uberbacher, Edward C. [1 ]
机构
[1] Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Oak Ridge, TN 37830 USA
[2] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA
来源
CHEMICAL PAPERS | 2013年 / 67卷 / 07期
关键词
acetylcholine; acetylcholineterase; active site; gorge; aromatic residues; MOLECULAR-DYNAMICS SIMULATIONS; TORPEDO-CALIFORNICA; LIQUID WATER; X-RAY; PROTEINS; BINDING; DISEASE;
D O I
10.2478/s11696-013-0354-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The presence of an unusually large number of aromatic residues in the active site gorge of acetylcholinesterase is a subject of great interest. Flexibility of these residues has been suspected to be a key player in controlling the ligand traversal in the gorge. This raises the question of whether the over-representation of aromatic residues in the gorge implies higher-than-normal flexibility of these residues. The current study suggests that it does not. Large changes in the hydrophobic cross-sectional area due to dihedral oscillations are probably the reason of their presence in the gorge. (C) 2013 Institute of Chemistry, Slovak Academy of Sciences
引用
收藏
页码:677 / 681
页数:5
相关论文
共 22 条
[1]  
Birks J, 2006, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD001190.pub3, 10.1002/14651858.CD001190.pub2]
[2]   MolProbity: all-atom contacts and structure validation for proteins and nucleic acids [J].
Davis, Ian W. ;
Leaver-Fay, Andrew ;
Chen, Vincent B. ;
Block, Jeremy N. ;
Kapral, Gary J. ;
Wang, Xueyi ;
Murray, Laura W. ;
Arendall, W. Bryan, III ;
Snoeyink, Jack ;
Richardson, Jane S. ;
Richardson, David C. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W375-W383
[3]   X-ray structures of Torpedo californica acetylcholinesterase complexed with (+)-Huperzine A and (-)-huperzine B:: Structural evidence for an active site rearrangement [J].
Dvir, H ;
Jiang, HL ;
Wong, DM ;
Harel, M ;
Chetrit, M ;
He, XC ;
Jin, GY ;
Yu, GL ;
Tang, XC ;
Silman, I ;
Bai, DL ;
Sussman, JL .
BIOCHEMISTRY, 2002, 41 (35) :10810-10818
[4]   CHOLINESTERASES AND THE PATHOLOGY OF ALZHEIMER-DISEASE [J].
GEULA, C ;
MESULAM, MM .
ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 1995, 9 :23-28
[5]   OPEN BACK DOOR IN A MOLECULAR-DYNAMICS SIMULATION OF ACETYLCHOLINESTERASE [J].
GILSON, MK ;
STRAATSMA, TP ;
MCCAMMON, JA ;
RIPOLL, DR ;
FAERMAN, CH ;
AXELSEN, PH ;
SILMAN, I ;
SUSSMAN, JL .
SCIENCE, 1994, 263 (5151) :1276-1278
[6]   Crystal structure of thioflavin T bound to the peripheral site of Torpedo californica acetylcholinesterase reveals how thioflavin T acts as a sensitive fluorescent reporter of ligand binding to the acylation site [J].
Harel, Michal ;
Sonoda, Leilani K. ;
Silman, Israel ;
Sussman, Joel L. ;
Rosenberry, Terrone L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7856-7861
[7]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38
[8]   COMPARISON OF SIMPLE POTENTIAL FUNCTIONS FOR SIMULATING LIQUID WATER [J].
JORGENSEN, WL ;
CHANDRASEKHAR, J ;
MADURA, JD ;
IMPEY, RW ;
KLEIN, ML .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (02) :926-935
[9]   Molecular dynamics simulations of biomolecules [J].
Karplus, M ;
McCammon, JA .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (09) :646-652
[10]   Structure of acetylcholinesterase complexed with E2020 (Aricept®):: implications for the design of new anti-Alzheimer drugs [J].
Kryger, G ;
Silman, I ;
Sussman, JL .
STRUCTURE, 1999, 7 (03) :297-307