Third-order nanocircuit elements for neuromorphic engineering

被引:269
作者
Kumar, Suhas [1 ]
Williams, R. Stanley [2 ]
Wang, Ziwen [3 ]
机构
[1] Hewlett Packard Labs, Palo Alto, CA 94304 USA
[2] Texas A&M Univ, College Stn, TX USA
[3] Stanford Univ, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
OSCILLATORS; MEMRISTORS;
D O I
10.1038/s41586-020-2735-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Current hardware approaches to biomimetic or neuromorphic artificial intelligence rely on elaborate transistor circuits to simulate biological functions. However, these can instead be more faithfully emulated by higher-order circuit elements that naturally express neuromorphic nonlinear dynamics(1-4). Generating neuromorphic action potentials in a circuit element theoretically requires a minimum of third-order complexity (for example, three dynamical electrophysical processes)(5), but there have been few examples of second-order neuromorphic elements, and no previous demonstration of any isolated third-order element(6-8). Using both experiments and modelling, here we show how multiple electrophysical processes-including Mott transition dynamics-form a nanoscale third-order circuit element. We demonstrate simple transistorless networks of third-order elements that perform Boolean operations and find analogue solutions to a computationally hard graph-partitioning problem. This work paves a way towards very compact and densely functional neuromorphic computing primitives, and energy-efficient validation of neuroscientific models. Electrophysical processes are used to create third-order nanoscale circuit elements, and these are used to realize a transistorless network that can perform Boolean operations and find solutions to a computationally hard graph-partitioning problem.
引用
收藏
页码:518 / +
页数:7
相关论文
共 43 条
[1]  
[Anonymous], 2012, Handbook of natural computing
[2]   Cognitive chimera states in human brain networks [J].
Bansal, Kanika ;
Garcia, Javier O. ;
Tompson, Steven H. ;
Verstynen, Timothy ;
Vettel, Jean M. ;
Muldoon, Sarah F. .
SCIENCE ADVANCES, 2019, 5 (04)
[3]   Fast Spiking of a Mott VO2-Carbon Nanotube Composite Device [J].
Bohaichuk, Stephanie M. ;
Kumar, Suhas ;
Pitner, Greg ;
McClellan, Connor J. ;
Jeong, Jaewoo ;
Samant, Mahesh G. ;
Wong, H-S. Philip ;
Parkin, Stuart S. P. ;
Williams, R. Stanley ;
Pop, Eric .
NANO LETTERS, 2019, 19 (10) :6751-6755
[4]   Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks [J].
Cai, Fuxi ;
Kumar, Suhas ;
Van Vaerenbergh, Thomas ;
Sheng, Xia ;
Liu, Rui ;
Li, Can ;
Liu, Zhan ;
Foltin, Martin ;
Yu, Shimeng ;
Xia, Qiangfei ;
Yang, J. Joshua ;
Beausoleil, Raymond ;
Lu, Wei D. ;
Strachan, John Paul .
NATURE ELECTRONICS, 2020, 3 (07) :409-418
[5]   Analog Coupled Oscillator Based Weighted Ising Machine [J].
Chou, Jeffrey ;
Bramhavar, Suraj ;
Ghosh, Siddhartha ;
Herzog, William .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]  
Chua L., 2019, POLITICS LOVE MYANMA
[7]   Everything You Wish to Know About Memristors But Are Afraid to Ask [J].
Chua, Leon .
RADIOENGINEERING, 2015, 24 (02) :319-368
[8]   Memristor, Hodgkin-Huxley, and Edge of Chaos [J].
Chua, Leon .
NANOTECHNOLOGY, 2013, 24 (38)
[9]   Coupled oscillators for computing: A review and perspective [J].
Csaba, Gyorgy ;
Porod, Wolfgang .
APPLIED PHYSICS REVIEWS, 2020, 7 (01)
[10]   Designing Negative Differential Resistance Devices Based on Self-Heating [J].
Gibson, Gary A. .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (22)