ON A KELVIN-VOIGT VISCOELASTIC WAVE EQUATION WITH STRONG DELAY

被引:6
作者
Demchenko, Hanna [1 ]
Anikushyn, Andrii [2 ]
Pokojovy, Michael [3 ]
机构
[1] Masaryk Univ, Fac Econ & Adm, Brno 60200, Czech Republic
[2] Taras Shevcheno Natl Univ Kyiv, Dept Comp Sci & Cybernet, UA-02000 Kiev, Ukraine
[3] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
wave equation; Kelvin-Voigt damping; time-localized delay; well-posedness; exponential stability; singular limit; GLOBAL EXISTENCE; TIME DELAYS; EXPONENTIAL DECAY; STABILIZATION; BOUNDARY; STABILITY; BEHAVIOR; SYSTEMS; ENERGY; TERM;
D O I
10.1137/18M1219308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An initial-boundary value problem for a viscoelastic wave equation subject to a strong time-localized delay in a Kelvin-Voigt-type material law is considered. After transforming the equation to an abstract Cauchy problem on the extended phase space, a global well-posedness theory is established using the operator semigroup theory both in Sobolev-valued C-0- and BV-spaces. Under appropriate assumptions on the coefficients, a global exponential decay rate is obtained and the stability region in the parameter space is further explored using Lyapunov's indirect method. The singular limit tau -> 0 is studied with the aid of the energy method. Finally, a numerical example from a real-world application in biomechanics is presented.
引用
收藏
页码:4382 / 4412
页数:31
相关论文
共 50 条
  • [31] Uniform Decay for a Viscoelastic Wave Equation with Density and Time-Varying Delay in Rn
    Zitouni, Salah
    Zennir, Khaled
    Bouzettouta, Lamine
    FILOMAT, 2019, 33 (03) : 961 - 970
  • [32] TRANSMISSION PROBLEMS IN (THERMO)VISCOELASTICITY WITH KELVIN-VOIGT DAMPING: NONEXPONENTIAL, STRONG, AND POLYNOMIAL STABILITY
    Munoz Rivera, Jaime E.
    Racke, Reinhard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) : 3741 - 3765
  • [33] Decay for the Kelvin-Voigt damped wave equation: Piecewise smooth damping
    Burq, Nicolas
    Sun, Chenmin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01): : 446 - 483
  • [34] ASYMPTOTIC BEHAVIOR FOR A VISCOELASTIC WAVE EQUATION WITH A DELAY TERM
    Wu, Shun-Tang
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03): : 765 - 784
  • [35] Existence and asymptotic stability of a viscoelastic wave equation with a delay
    Kirane, Mokhtar
    Said-Houari, Belkacem
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (06): : 1065 - 1082
  • [36] Uniform Stabilization for the Semi-linear Wave Equation with Nonlinear Kelvin-Voigt Damping
    Ammari, Kais
    Cavalcanti, Marcelo M.
    Mansouri, Sabeur
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02)
  • [37] Frictional versus Kelvin-Voigt damping in a transmission problem
    Oquendo, Higidio Portillo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7026 - 7032
  • [38] Stability of a Timoshenko system with local Kelvin-Voigt damping
    Tian, Xinhong
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [39] EVENTUAL DIFFERENTIABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING
    Liu, Kangsheng
    Liu, Zhuangyi
    Zhang, Qiong
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 443 - 454
  • [40] Existence and uniqueness for a viscoelastic Kelvin-Voigt model with nonconvex stored energy
    Koumatos, Konstantinos
    Lattanzio, Corrado
    Spirito, Stefano
    Tzavaras, Athanasios E.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2023, 20 (02) : 433 - 474