Research on Dynamic Traffic Flow Forecasting Based on Improved Particle Swarm Optimization Algorithm and Neural Network Theory

被引:1
|
作者
Qi, Bo [1 ]
Ma, Changxi [1 ]
Sun, Li [1 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Traff & Transportat, Lanzhou 730070, Gansu, Peoples R China
来源
SUSTAINABLE ENVIRONMENT AND TRANSPORTATION, PTS 1-4 | 2012年 / 178-181卷
关键词
Dynamic Traffic Flow; Particle Optimization Algorithm; Nerve Network; Forecasting Model;
D O I
10.4028/www.scientific.net/AMM.178-181.2686
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Focused on urban traffic flow issue, the dynamic traffic flow forecasting model is established based on the improved particle optimization algorithm and nerve network theory. Taking the macro dynamic traffic flow as the model, the paper analyzes primarily the features of traffic flow by means of stage-distinguishing method, researches the improved particle optimization algorithm and nerve network theory further and establishes the dynamic traffic flow forecasting model. Finally, it utilizes this model to forecast the traffic flow on North Binghe Road in Lanzhou City. All the results demonstrate that this forecasting model is of higher prestige and proper availability.
引用
收藏
页码:2686 / 2689
页数:4
相关论文
共 50 条
  • [1] Research of BP neural network based on improved particle swarm optimization algorithm
    School of Mechanical and Information Engineering, China University of Mining and Technology, Beijing, China
    不详
    不详
    J. Netw., 2013, 4 (947-954):
  • [2] Wave capture power forecasting based on improved particle swarm optimization neural network algorithm
    Huang B.
    Yang J.
    Lu S.
    Chen H.
    Xie D.
    Yang, Junhua (yly93@gdut.edu.cn), 1600, Science Press (42): : 302 - 308
  • [3] Improved particle swarm optimization algorithm based on neural network for dynamic path planning
    Chen Q.
    Zheng Y.
    Jiang H.
    Chen Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (02): : 51 - 55
  • [4] RBF Neural Network Optimized by Particle Swarm Optimization for Forecasting Urban Traffic Flow
    Li Xiaobin
    2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 1, PROCEEDINGS, 2009, : 124 - 127
  • [5] An improved particle swarm optimization based training algorithm for neural network
    Zhao, FQ
    Hong, Y
    Yu, DM
    Yang, YH
    ICMIT 2005: INFORMATION SYSTEMS AND SIGNAL PROCESSING, 2005, 6041
  • [6] Prediction for network traffic of radial basis function neural network model based on improved particle swarm optimization algorithm
    Weijie Zhang
    Dengfeng Wei
    Neural Computing and Applications, 2018, 29 : 1143 - 1152
  • [7] Prediction for network traffic of radial basis function neural network model based on improved particle swarm optimization algorithm
    Zhang, Weijie
    Wei, Dengfeng
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (04): : 1143 - 1152
  • [8] An Improved PID Neural Network Control Algorithm Based on Particle Swarm Optimization
    Dou, Chunhong
    Zhang, Ling
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL VI, 2010, : 32 - 34
  • [9] An Improved PID Neural Network Control Algorithm Based on Particle Swarm Optimization
    Dou, Chunhong
    Zhang, Ling
    2011 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION AND INDUSTRIAL APPLICATION (ICIA2011), VOL I, 2011, : 32 - 34
  • [10] Neural network based on neighborhood topology improved particle swarm optimization algorithm
    Hua, Jingxin
    Chen, Zhimin
    Bo, Yuming
    Zhang, Jie
    Zhu, Jianliang
    Journal of Information and Computational Science, 2013, 10 (02): : 587 - 597