Plasmonic terahertz lasing in an array of graphene nanocavities

被引:105
|
作者
Popov, V. V. [1 ,2 ]
Polischuk, O. V. [1 ,2 ]
Davoyan, A. R. [1 ]
Ryzhii, V. [3 ]
Otsuji, T. [3 ]
Shur, M. S. [4 ]
机构
[1] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Saratov Branch, Saratov 410019, Russia
[2] Saratov NG Chernyshevskii State Univ, Saratov 410012, Russia
[3] Tohoku Univ, Elect Commun Res Inst, Sendai, Miyagi 9808577, Japan
[4] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 19期
基金
美国国家科学基金会; 俄罗斯基础研究基金会;
关键词
GATE TRANSISTOR STRUCTURE; TRANSFORMATION; METAMATERIALS; RADIATION;
D O I
10.1103/PhysRevB.86.195437
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a novel concept of terahertz lasing based on stimulated generation of plasmons in a planar array of graphene resonant micro/nanocavities strongly coupled to terahertz radiation. Due to the strong plasmon confinement and superradiant nature of terahertz emission by the array of plasmonic nanocavities, the amplification of terahertz waves is enhanced by many orders of magnitude at the plasmon resonance frequencies. We show that the lasing regime is ensured by the balance between the plasmon gain and plasmon radiative damping.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Synergy between plasmonic nanocavities and random lasing modes: a tool to dequench plasmon quenched fluorophore emission
    Yadav, Renu
    Pal, Sourabh
    Jana, Subhajit
    Roy, Shuvajit
    Debnath, Kapil
    Ray, Samit K.
    Brundavanam, Maruthi M.
    Bhaktha, B. N. Shivakiran
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (41) : 28336 - 28349
  • [32] Terahertz Lasing with Weak Plasmon Modes in Periodic Graphene Structures
    Fateev, Denis, V
    Polischuk, Olga, V
    Mashinsky, Konstantin, V
    Moiseenko, Ilya M.
    Morozov, Mikhail Yu
    Popov, Viacheslav V.
    PHYSICAL REVIEW APPLIED, 2021, 15 (03):
  • [33] Lasing in metallic-coated nanocavities
    Martin T. Hill
    Yok-Siang Oei
    Barry Smalbrugge
    Youcai Zhu
    Tjibbe de Vries
    Peter J. van Veldhoven
    Frank W. M. van Otten
    Tom J. Eijkemans
    Jarosław P. Turkiewicz
    Huug de Waardt
    Erik Jan Geluk
    Soon-Hong Kwon
    Yong-Hee Lee
    Richard Nötzel
    Meint K. Smit
    Nature Photonics, 2007, 1 : 589 - 594
  • [34] Terahertz Lasing and Detection in Double-Graphene-Layer Structures
    Otsuji, Taiichi
    Alshkin, Vladimir Ya.
    Dubinov, Alexander A.
    Ryzhii, Maxim
    Mitin, Vladimir
    Shur, Michael S.
    Ryzhii, Victor
    2014 LESTER EASTMAN CONFERENCE ON HIGH PERFORMANCE DEVICES (LEC), 2014,
  • [35] Lasing in metallic- Coated nanocavities
    Hill, Martin T.
    Oei, Yok-Siang
    Smalbrugge, Barry
    Zhu, Youcai
    De Vries, Tjibbe
    Van Veldhoven, Peter J.
    Van Otten, Frank W. M.
    Eijkemans, Tom J.
    Turkiewicz, Jaroslaw P.
    De Waardt, Huug
    Geluk, Erik Jan
    Kwon, Soon-Hong
    Lee, Yong-Hee
    Notzel, Richard
    Smit, Meint K.
    NATURE PHOTONICS, 2007, 1 (10) : 589 - 594
  • [36] Graphene plasmonic nano-antenna for terahertz communication
    Kavitha, S.
    Sairam, K. V. S. S. S. S.
    Singh, Ashish
    SN APPLIED SCIENCES, 2022, 4 (04):
  • [37] Graphene plasmonic nano-antenna for terahertz communication
    S. Kavitha
    K. V. S. S. S. S. Sairam
    Ashish Singh
    SN Applied Sciences, 2022, 4
  • [38] Terahertz graphene modulator based on hybrid plasmonic waveguide
    Huang, Jinwen
    Song, Zhengyong
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [39] Fast Graphene Based Plasmonic Terahertz Amplitude Modulators
    Jessop, D. S.
    Kindness, S. J.
    Xiao, L.
    Braeuninger-Weimer, P.
    Lin, H.
    Ren, Y.
    Griffiths, J.
    Ren, C. X.
    Hofmann, S.
    Zeitler, J. A.
    Beere, H. E.
    Ritchie, D. A.
    Degl'Innocenti, R.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [40] Ultrasensitive Tunable Terahertz Sensor With Graphene Plasmonic Grating
    Yan, Fei
    Li, Li
    Wang, Ruoxing
    Tian, Hao
    Liu, Jianlong
    Liu, Jianqiang
    Tian, Fengjun
    Zhang, Jianzhong
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (04) : 1103 - 1112