MST plus plus : Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction

被引:136
作者
Cai, Yuanhao [1 ]
Lin, Jing [1 ]
Lin, Zudi [2 ]
Wang, Haoqian [1 ]
Zhang, Yulun [3 ]
Pfister, Hanspeter [2 ]
Timofte, Radu [3 ,4 ]
Van Gool, Luc [3 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[2] Harvard Univ, Cambridge, MA 02138 USA
[3] Swiss Fed Inst Technol, CVL, Zurich, Switzerland
[4] JMU Wurzburg, CAIDAS, Wurzburg, Germany
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022 | 2022年
关键词
ALGORITHMS;
D O I
10.1109/CVPRW56347.2022.00090
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Existing leading methods for spectral reconstruction (SR) focus on designing deeper or wider convolutional neural networks (CNNs) to learn the end-to-end mapping from the RGB image to its hyperspectral image (HSI). These CNN-based methods achieve impressive restoration performance while showing limitations in capturing the lon-grange dependencies and self-similarity prior. To cope with this problem, we propose a novel Transformer-based method, Multi-stage Spectral-wise Transformer (MST++), for efficient spectral reconstruction. In particular, we employ Spectral-wise Multi-head Self-attention (S-MSA) that is based on the HSI spatially sparse while spectrally self-similar nature to compose the basic unit, Spectral-wise Attention Block (SAB). Then SABs build up Single-stage Spectral-wise Transformer (SST) that exploits a U-shaped structure to extract multi-resolution contextual information. Finally, our MST++, cascaded by several SSTs, progressively improves the reconstruction quality from coarse to fine. Comprehensive experiments show that our MST++ significantly outperforms other state-of-the-art methods. In the NTIRE 2022 Spectral Reconstruction Challenge, our approach won the First place. Code and pre-trained models are publicly available at https://github.com/caiyuanhao1998/MST-plus-plus.
引用
收藏
页码:744 / 754
页数:11
相关论文
共 91 条
  • [1] In Defense of Shallow Learned Spectral Reconstruction from RGB Images
    Aeschbacher, Jonas
    Wu, Jiqing
    Timofte, Radu
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 471 - 479
  • [2] [Anonymous], 2021, P IEEE C COMP VIS PA, DOI DOI 10.1109/ICCV48922.2021.00262
  • [3] NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image
    Arad, Boaz
    Timofte, Radu
    Ben-Shahar, Ohad
    Lin, Yi-Tun
    Finlayson, Graham
    Givati, Shai
    Li, Jiaojiao
    Wu, Chaoxiong
    Song, Rui
    Li, Yunsong
    Liu, Fei
    Lang, Zhiqiang
    Wei, Wei
    Zhang, Lei
    Nie, Jiangtao
    Zhao, Yuzhi
    Po, Lai-Man
    Yan, Qiong
    Liu, Wei
    Lin, Tingyu
    Kim, Youngjung
    Shin, Changyeop
    Rho, Kyeongha
    Kim, Sungho
    Zhu, Zhiyu
    Hou, Junhui
    Sun, He
    Ren, Jinchang
    Fang, Zhenyu
    Yan, Yijun
    Peng, Hao
    Chen, Xiaomei
    Zhao, Jie
    Stiebel, Tarek
    Koppers, Simon
    Merhof, Dorit
    Gupta, Honey
    Mitra, Kaushik
    Fubara, Biebele Joslyn
    Sedky, Mohamed
    Dyke, Dave
    Banerjee, Atmadeep
    Palrecha, Akash
    Sabarinathan
    Uma, K.
    Vinothini, D. Synthiya
    Bama, B. Sathya
    Roomi, S. M. Md Mansoor
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1806 - 1822
  • [4] NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images
    Arad, Boaz
    Ben-Shahar, Ohad
    Timofte, Radu
    Van Gool, Luc
    Zhang, Lei
    Yang, Ming-Hsuan
    Xiong, Zhiwei
    Chen, Chang
    Shi, Zhan
    Liu, Dong
    Wu, Feng
    Lanaras, Charis
    Galliani, Silvano
    Schindler, Konrad
    Stiebel, Tarek
    Koppers, Simon
    Seltsam, Philipp
    Zhou, Ruofan
    El Helou, Majed
    Lahoud, Fayez
    Shahpaski, Marjan
    Zheng, Ke
    Gao, Lianru
    Zhang, Bing
    Cui, Ximin
    Yu, Haoyang
    Can, Yigit Baran
    Alvarez-Gila, Aitor
    van de Weijer, Joost
    Garrote, Estibaliz
    Galdran, Adrian
    Sharma, Manoj
    Koundinya, Sriharsha
    Upadhyay, Avinash
    Manekar, Raunak
    Mukhopadhyay, Rudrabha
    Sharma, Himanshu
    Chaudhury, Santanu
    Nagasubramanian, Koushik
    Ghosal, Sambuddha
    Singh, Asheesh K.
    Singh, Arti
    Ganapathysubramanian, Baskar
    Sarkar, Soumik
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1042 - 1051
  • [5] Sparse Recovery of Hyperspectral Signal from Natural RGB Images
    Arad, Boaz
    Ben-Shahar, Ohad
    [J]. COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 19 - 34
  • [6] Arad Boaz, 2022, CVPRW
  • [7] Arnab A., 2021, arXiv
  • [8] Detection of preinvasive cancer cells
    Backman, V
    Wallace, MB
    Perelman, LT
    Arendt, JT
    Gurjar, R
    Müller, MG
    Zhang, Q
    Zonios, G
    Kline, E
    McGillican, T
    Shapshay, S
    Valdez, T
    Badizadegan, K
    Crawford, JM
    Fitzmaurice, M
    Kabani, S
    Levin, HS
    Seiler, M
    Dasari, RR
    Itzkan, I
    Van Dam, J
    Feld, MS
    [J]. NATURE, 2000, 406 (6791) : 35 - 36
  • [9] A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) : 2992 - 3004
  • [10] Borengasser M., 2007, Hyperspectral remote sensing: principles and applications, P1