MST plus plus : Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction

被引:176
作者
Cai, Yuanhao [1 ]
Lin, Jing [1 ]
Lin, Zudi [2 ]
Wang, Haoqian [1 ]
Zhang, Yulun [3 ]
Pfister, Hanspeter [2 ]
Timofte, Radu [3 ,4 ]
Van Gool, Luc [3 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[2] Harvard Univ, Cambridge, MA 02138 USA
[3] Swiss Fed Inst Technol, CVL, Zurich, Switzerland
[4] JMU Wurzburg, CAIDAS, Wurzburg, Germany
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022 | 2022年
关键词
ALGORITHMS;
D O I
10.1109/CVPRW56347.2022.00090
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Existing leading methods for spectral reconstruction (SR) focus on designing deeper or wider convolutional neural networks (CNNs) to learn the end-to-end mapping from the RGB image to its hyperspectral image (HSI). These CNN-based methods achieve impressive restoration performance while showing limitations in capturing the lon-grange dependencies and self-similarity prior. To cope with this problem, we propose a novel Transformer-based method, Multi-stage Spectral-wise Transformer (MST++), for efficient spectral reconstruction. In particular, we employ Spectral-wise Multi-head Self-attention (S-MSA) that is based on the HSI spatially sparse while spectrally self-similar nature to compose the basic unit, Spectral-wise Attention Block (SAB). Then SABs build up Single-stage Spectral-wise Transformer (SST) that exploits a U-shaped structure to extract multi-resolution contextual information. Finally, our MST++, cascaded by several SSTs, progressively improves the reconstruction quality from coarse to fine. Comprehensive experiments show that our MST++ significantly outperforms other state-of-the-art methods. In the NTIRE 2022 Spectral Reconstruction Challenge, our approach won the First place. Code and pre-trained models are publicly available at https://github.com/caiyuanhao1998/MST-plus-plus.
引用
收藏
页码:744 / 754
页数:11
相关论文
共 91 条
[1]   In Defense of Shallow Learned Spectral Reconstruction from RGB Images [J].
Aeschbacher, Jonas ;
Wu, Jiqing ;
Timofte, Radu .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :471-479
[2]   NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image [J].
Arad, Boaz ;
Timofte, Radu ;
Ben-Shahar, Ohad ;
Lin, Yi-Tun ;
Finlayson, Graham ;
Givati, Shai ;
Li, Jiaojiao ;
Wu, Chaoxiong ;
Song, Rui ;
Li, Yunsong ;
Liu, Fei ;
Lang, Zhiqiang ;
Wei, Wei ;
Zhang, Lei ;
Nie, Jiangtao ;
Zhao, Yuzhi ;
Po, Lai-Man ;
Yan, Qiong ;
Liu, Wei ;
Lin, Tingyu ;
Kim, Youngjung ;
Shin, Changyeop ;
Rho, Kyeongha ;
Kim, Sungho ;
Zhu, Zhiyu ;
Hou, Junhui ;
Sun, He ;
Ren, Jinchang ;
Fang, Zhenyu ;
Yan, Yijun ;
Peng, Hao ;
Chen, Xiaomei ;
Zhao, Jie ;
Stiebel, Tarek ;
Koppers, Simon ;
Merhof, Dorit ;
Gupta, Honey ;
Mitra, Kaushik ;
Fubara, Biebele Joslyn ;
Sedky, Mohamed ;
Dyke, Dave ;
Banerjee, Atmadeep ;
Palrecha, Akash ;
Sabarinathan ;
Uma, K. ;
Vinothini, D. Synthiya ;
Bama, B. Sathya ;
Roomi, S. M. Md Mansoor .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :1806-1822
[3]   NTIRE 2018 Challenge on Spectral Reconstruction from RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad ;
Timofte, Radu ;
Van Gool, Luc ;
Zhang, Lei ;
Yang, Ming-Hsuan ;
Xiong, Zhiwei ;
Chen, Chang ;
Shi, Zhan ;
Liu, Dong ;
Wu, Feng ;
Lanaras, Charis ;
Galliani, Silvano ;
Schindler, Konrad ;
Stiebel, Tarek ;
Koppers, Simon ;
Seltsam, Philipp ;
Zhou, Ruofan ;
El Helou, Majed ;
Lahoud, Fayez ;
Shahpaski, Marjan ;
Zheng, Ke ;
Gao, Lianru ;
Zhang, Bing ;
Cui, Ximin ;
Yu, Haoyang ;
Can, Yigit Baran ;
Alvarez-Gila, Aitor ;
van de Weijer, Joost ;
Garrote, Estibaliz ;
Galdran, Adrian ;
Sharma, Manoj ;
Koundinya, Sriharsha ;
Upadhyay, Avinash ;
Manekar, Raunak ;
Mukhopadhyay, Rudrabha ;
Sharma, Himanshu ;
Chaudhury, Santanu ;
Nagasubramanian, Koushik ;
Ghosal, Sambuddha ;
Singh, Asheesh K. ;
Singh, Arti ;
Ganapathysubramanian, Baskar ;
Sarkar, Soumik .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1042-1051
[4]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[5]  
Arad Boaz, 2022, CVPRW
[6]  
Arnab A., 2021, arXiv
[7]   Detection of preinvasive cancer cells [J].
Backman, V ;
Wallace, MB ;
Perelman, LT ;
Arendt, JT ;
Gurjar, R ;
Müller, MG ;
Zhang, Q ;
Zonios, G ;
Kline, E ;
McGillican, T ;
Shapshay, S ;
Valdez, T ;
Badizadegan, K ;
Crawford, JM ;
Fitzmaurice, M ;
Kabani, S ;
Levin, HS ;
Seiler, M ;
Dasari, RR ;
Itzkan, I ;
Van Dam, J ;
Feld, MS .
NATURE, 2000, 406 (6791) :35-36
[8]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[9]  
Borengasser M., 2007, Hyperspectral remote sensing: principles and applications, P1
[10]  
Breuer Michael, 2000, INT ARCH PHOTOGRAMME, P2