A note on the cone conjecture for K3 surfaces in positive characteristic

被引:26
作者
Lieblich, Max [1 ]
Maulik, Davesh [2 ]
机构
[1] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
10.4310/MRL.2018.v25.n6.a9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, for a K3 surface in characteristic p > 2, the automorphism group acts on the nef cone with a rational polyhedral fundamental domain and on the nodal classes with finitely many orbits. As a consequence, for any non-negative integer g, there are only finitely many linear systems of irreducible curves on the surface of arithmetic genus g, up to the action of the automorphism group.
引用
收藏
页码:1879 / 1891
页数:13
相关论文
共 22 条
[1]  
[Anonymous], 2001, PROG MATH
[2]  
ARTIN M, 1974, ANN SCI ECOLE NORM S, V7, P543
[3]  
Ash A, 1975, LIE GROUPS HIST FRON, VIV
[4]  
Beauville A., 1996, COMPLEX ALGEBRAIC SU
[5]   Birational boundedness for holomorphic symplectic varieties, Zarhin's trick for K3 surfaces, and the Tate conjecture [J].
Charles, Francois .
ANNALS OF MATHEMATICS, 2016, 184 (02) :487-526
[6]  
Charles F, 2015, INVENT MATH, V202, P481, DOI 10.1007/s00222-015-0594-8
[7]   The Tate conjecture for K3 surfaces over finite fields [J].
Charles, Francois .
INVENTIONES MATHEMATICAE, 2013, 194 (01) :119-145
[8]  
DELIGNE P, 1981, ALGEBRAIC SURFACES O, V868, P58
[9]  
Illusie L., 1971, LECT NOTES MATH, V239
[10]   2-ADIC INTEGRAL CANONICAL MODELS [J].
Kim, Wansu ;
Pera, Keerthi Madapusi .
FORUM OF MATHEMATICS SIGMA, 2016, 4